R
↳Dependency Pair Analysis
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
+'(f(x), f(y)) -> +'(x, y)
+'(f(x), +(f(y), z)) -> +'(f(+(x, y)), z)
+'(f(x), +(f(y), z)) -> +'(x, y)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
+'(f(x), +(f(y), z)) -> +'(x, y)
+'(f(x), +(f(y), z)) -> +'(f(+(x, y)), z)
+'(f(x), f(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+(+(x, y), z) -> +(x, +(y, z))
+(f(x), f(y)) -> f(+(x, y))
+(f(x), +(f(y), z)) -> +(f(+(x, y)), z)
+'(f(x), +(f(y), z)) -> +'(x, y)
+'(+(x, y), z) -> +'(y, z)
+(+(x, y), z) -> +(x, +(y, z))
+(f(x), f(y)) -> f(+(x, y))
+(f(x), +(f(y), z)) -> +(f(+(x, y)), z)
POL(+(x1, x2)) = 1 + x1 + x2 POL(f(x1)) = x1 POL(+'(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
+'(f(x), +(f(y), z)) -> +'(f(+(x, y)), z)
+'(f(x), f(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(x, +(y, z))
+(+(x, y), z) -> +(x, +(y, z))
+(f(x), f(y)) -> f(+(x, y))
+(f(x), +(f(y), z)) -> +(f(+(x, y)), z)
+'(f(x), +(f(y), z)) -> +'(f(+(x, y)), z)
+'(f(x), f(y)) -> +'(x, y)
+(+(x, y), z) -> +(x, +(y, z))
+(f(x), f(y)) -> f(+(x, y))
+(f(x), +(f(y), z)) -> +(f(+(x, y)), z)
POL(+(x1, x2)) = x1 + x2 POL(f(x1)) = 1 + x1 POL(+'(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Polynomial Ordering
+'(+(x, y), z) -> +'(x, +(y, z))
+(+(x, y), z) -> +(x, +(y, z))
+(f(x), f(y)) -> f(+(x, y))
+(f(x), +(f(y), z)) -> +(f(+(x, y)), z)
+'(+(x, y), z) -> +'(x, +(y, z))
POL(+(x1, x2)) = 1 + x1 POL(f(x1)) = 0 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 4
↳Dependency Graph
+(+(x, y), z) -> +(x, +(y, z))
+(f(x), f(y)) -> f(+(x, y))
+(f(x), +(f(y), z)) -> +(f(+(x, y)), z)