Term Rewriting System R:
[x, y, z]
i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

I(+(x, y)) -> +'(i(x), i(y))
I(+(x, y)) -> I(x)
I(+(x, y)) -> I(y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)

Rules:

i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

• Dependency Pairs:

I(+(x, y)) -> I(y)
I(+(x, y)) -> I(x)

Rules:

i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)

Rules:

i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

• Dependency Pairs:

I(+(x, y)) -> I(y)
I(+(x, y)) -> I(x)

Rules:

i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

Termination of R could not be shown.
Duration:
0:00 minutes