Term Rewriting System R:
[X, Y]
f(c(X, s(Y))) -> f(c(s(X), Y))
g(c(s(X), Y)) -> f(c(X, s(Y)))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
F(c(X, s(Y))) -> F(c(s(X), Y))
G(c(s(X), Y)) -> F(c(X, s(Y)))
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
Dependency Pair:
F(c(X, s(Y))) -> F(c(s(X), Y))
Rules:
f(c(X, s(Y))) -> f(c(s(X), Y))
g(c(s(X), Y)) -> f(c(X, s(Y)))
The following dependency pair can be strictly oriented:
F(c(X, s(Y))) -> F(c(s(X), Y))
Additionally, the following rules can be oriented:
f(c(X, s(Y))) -> f(c(s(X), Y))
g(c(s(X), Y)) -> f(c(X, s(Y)))
Used ordering: Polynomial ordering with Polynomial interpretation:
POL(c(x1, x2)) | = x2 |
POL(g(x1)) | = 0 |
POL(s(x1)) | = 1 + x1 |
POL(f(x1)) | = 0 |
POL(F(x1)) | = x1 |
resulting in one new DP problem.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
Dependency Pair:
Rules:
f(c(X, s(Y))) -> f(c(s(X), Y))
g(c(s(X), Y)) -> f(c(X, s(Y)))
Using the Dependency Graph resulted in no new DP problems.
Termination of R successfully shown.
Duration:
0:00 minutes