Term Rewriting System R:
[X]
f(a, a) -> f(a, b)
f(a, b) -> f(s(a), c)
f(s(X), c) -> f(X, c)
f(c, c) -> f(a, a)

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

F(a, a) -> F(a, b)
F(a, b) -> F(s(a), c)
F(s(X), c) -> F(X, c)
F(c, c) -> F(a, a)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`

Dependency Pairs:

F(c, c) -> F(a, a)
F(s(X), c) -> F(X, c)
F(a, b) -> F(s(a), c)
F(a, a) -> F(a, b)

Rules:

f(a, a) -> f(a, b)
f(a, b) -> f(s(a), c)
f(s(X), c) -> f(X, c)
f(c, c) -> f(a, a)

The following dependency pair can be strictly oriented:

F(c, c) -> F(a, a)

The following rules can be oriented:

f(a, a) -> f(a, b)
f(a, b) -> f(s(a), c)
f(s(X), c) -> f(X, c)
f(c, c) -> f(a, a)

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
c > a

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> x1
s(x1) -> x1
f(x1, x2) -> x1

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 2`
`             ↳Dependency Graph`

Dependency Pairs:

F(s(X), c) -> F(X, c)
F(a, b) -> F(s(a), c)
F(a, a) -> F(a, b)

Rules:

f(a, a) -> f(a, b)
f(a, b) -> f(s(a), c)
f(s(X), c) -> f(X, c)
f(c, c) -> f(a, a)

Using the Dependency Graph the DP problem was split into 1 DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 2`
`             ↳DGraph`
`             ...`
`               →DP Problem 3`
`                 ↳Argument Filtering and Ordering`

Dependency Pair:

F(s(X), c) -> F(X, c)

Rules:

f(a, a) -> f(a, b)
f(a, b) -> f(s(a), c)
f(s(X), c) -> f(X, c)
f(c, c) -> f(a, a)

The following dependency pair can be strictly oriented:

F(s(X), c) -> F(X, c)

The following rules can be oriented:

f(a, a) -> f(a, b)
f(a, b) -> f(s(a), c)
f(s(X), c) -> f(X, c)
f(c, c) -> f(a, a)

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{a, c, b}

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> F(x1, x2)
s(x1) -> s(x1)
f(x1, x2) -> x2

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 2`
`             ↳DGraph`
`             ...`
`               →DP Problem 4`
`                 ↳Dependency Graph`

Dependency Pair:

Rules:

f(a, a) -> f(a, b)
f(a, b) -> f(s(a), c)
f(s(X), c) -> f(X, c)
f(c, c) -> f(a, a)

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes