Term Rewriting System R:
[X, Y, L]
rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

REV1(X, cons(Y, L)) -> REV1(Y, L)
REV(cons(X, L)) -> REV1(X, L)
REV(cons(X, L)) -> REV2(X, L)
REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))
REV2(X, cons(Y, L)) -> REV(rev2(Y, L))
REV2(X, cons(Y, L)) -> REV2(Y, L)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo


Dependency Pair:

REV1(X, cons(Y, L)) -> REV1(Y, L)


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))





The following dependency pair can be strictly oriented:

REV1(X, cons(Y, L)) -> REV1(Y, L)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(REV1(x1, x2))=  x2  
  POL(cons(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Polo


Dependency Pair:


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering


Dependency Pairs:

REV2(X, cons(Y, L)) -> REV2(Y, L)
REV2(X, cons(Y, L)) -> REV(rev2(Y, L))
REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))
REV(cons(X, L)) -> REV2(X, L)


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))





The following dependency pairs can be strictly oriented:

REV2(X, cons(Y, L)) -> REV2(Y, L)
REV2(X, cons(Y, L)) -> REV(rev2(Y, L))
REV(cons(X, L)) -> REV2(X, L)


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(rev2(x1, x2))=  x2  
  POL(rev(x1))=  x1  
  POL(0)=  0  
  POL(REV(x1))=  x1  
  POL(cons(x1, x2))=  1 + x2  
  POL(rev1(x1, x2))=  0  
  POL(REV2(x1, x2))=  x2  
  POL(nil)=  0  
  POL(s(x1))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 4
Dependency Graph


Dependency Pair:

REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes