Term Rewriting System R:
[X, Y, L]
rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

REV1(X, cons(Y, L)) -> REV1(Y, L)
REV(cons(X, L)) -> REV1(X, L)
REV(cons(X, L)) -> REV2(X, L)
REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))
REV2(X, cons(Y, L)) -> REV(rev2(Y, L))
REV2(X, cons(Y, L)) -> REV2(Y, L)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`

Dependency Pair:

REV1(X, cons(Y, L)) -> REV1(Y, L)

Rules:

rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))

The following dependency pair can be strictly oriented:

REV1(X, cons(Y, L)) -> REV1(Y, L)

There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(REV1(x1, x2)) =  x2 POL(cons(x1, x2)) =  1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 3`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Polo`

Dependency Pair:

Rules:

rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polynomial Ordering`

Dependency Pairs:

REV2(X, cons(Y, L)) -> REV2(Y, L)
REV2(X, cons(Y, L)) -> REV(rev2(Y, L))
REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))
REV(cons(X, L)) -> REV2(X, L)

Rules:

rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))

The following dependency pairs can be strictly oriented:

REV2(X, cons(Y, L)) -> REV2(Y, L)
REV2(X, cons(Y, L)) -> REV(rev2(Y, L))
REV(cons(X, L)) -> REV2(X, L)

Additionally, the following usable rules using the Ce-refinement can be oriented:

rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(rev2(x1, x2)) =  x2 POL(rev(x1)) =  x1 POL(0) =  0 POL(REV(x1)) =  x1 POL(cons(x1, x2)) =  1 + x2 POL(rev1(x1, x2)) =  0 POL(REV2(x1, x2)) =  x2 POL(nil) =  0 POL(s(x1)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 4`
`             ↳Dependency Graph`

Dependency Pair:

REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))

Rules:

rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes