Term Rewriting System R:
[Y, X]
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))

Termination of R to be shown.

R
Dependency Pair Analysis

R contains the following Dependency Pairs:

PLUS(s(X), Y) -> PLUS(X, Y)
MIN(s(X), s(Y)) -> MIN(X, Y)
MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
MIN(min(X, Y), Z) -> PLUS(Y, Z)
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MIN(X, Y)

Furthermore, R contains three SCCs.

R
DPs
→DP Problem 1
Argument Filtering and Ordering
→DP Problem 2
AFS
→DP Problem 3
AFS

Dependency Pair:

PLUS(s(X), Y) -> PLUS(X, Y)

Rules:

plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))

The following dependency pair can be strictly oriented:

PLUS(s(X), Y) -> PLUS(X, Y)

There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)

R
DPs
→DP Problem 1
AFS
→DP Problem 4
Dependency Graph
→DP Problem 2
AFS
→DP Problem 3
AFS

Dependency Pair:

Rules:

plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
AFS
→DP Problem 2
Argument Filtering and Ordering
→DP Problem 3
AFS

Dependency Pairs:

MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
MIN(s(X), s(Y)) -> MIN(X, Y)

Rules:

plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))

The following dependency pairs can be strictly oriented:

MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
MIN(s(X), s(Y)) -> MIN(X, Y)

The following usable rules using the Ce-refinement can be oriented:

plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{Z, min} > plus > s

resulting in one new DP problem.
Used Argument Filtering System:
MIN(x1, x2) -> MIN(x1, x2)
s(x1) -> s(x1)
min(x1, x2) -> min(x1, x2)
plus(x1, x2) -> plus(x1, x2)

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 5
Dependency Graph
→DP Problem 3
AFS

Dependency Pair:

Rules:

plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 3
Argument Filtering and Ordering

Dependency Pair:

QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))

Rules:

plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))

The following dependency pair can be strictly oriented:

QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))

The following usable rules using the Ce-refinement can be oriented:

min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
plus > s

resulting in one new DP problem.
Used Argument Filtering System:
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)
min(x1, x2) -> x1
plus(x1, x2) -> plus(x1, x2)

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 3
AFS
→DP Problem 6
Dependency Graph

Dependency Pair:

Rules:

plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes