ackin(s(

u21(ackout(

R

↳Dependency Pair Analysis

ACKIN(s(X), s(Y)) -> U21(ackin(s(X),Y),X)

ACKIN(s(X), s(Y)) -> ACKIN(s(X),Y)

U21(ackout(X),Y) -> ACKIN(Y,X)

Furthermore,

R

↳DPs

→DP Problem 1

↳Forward Instantiation Transformation

**ACKIN(s( X), s(Y)) -> ACKIN(s(X), Y)**

ackin(s(X), s(Y)) -> u21(ackin(s(X),Y),X)

u21(ackout(X),Y) -> u22(ackin(Y,X))

On this DP problem, a Forward Instantiation SCC transformation can be performed.

As a result of transforming the rule

no new Dependency Pairs are created.

ACKIN(s(X), s(Y)) -> U21(ackin(s(X),Y),X)

The transformation is resulting in one new DP problem:

R

↳DPs

→DP Problem 1

↳FwdInst

→DP Problem 2

↳Polynomial Ordering

**ACKIN(s( X), s(Y)) -> ACKIN(s(X), Y)**

ackin(s(X), s(Y)) -> u21(ackin(s(X),Y),X)

u21(ackout(X),Y) -> u22(ackin(Y,X))

The following dependency pair can be strictly oriented:

ACKIN(s(X), s(Y)) -> ACKIN(s(X),Y)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(s(x)_{1})= 1 + x _{1}_{ }^{ }_{ }^{ }POL(ACKIN(x)_{1}, x_{2})= x _{2}_{ }^{ }

resulting in one new DP problem.

R

↳DPs

→DP Problem 1

↳FwdInst

→DP Problem 2

↳Polo

...

→DP Problem 3

↳Dependency Graph

ackin(s(X), s(Y)) -> u21(ackin(s(X),Y),X)

u21(ackout(X),Y) -> u22(ackin(Y,X))

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes