R
↳Dependency Pair Analysis
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
no new Dependency Pairs are created.
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
one new Dependency Pair is created:
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
one new Dependency Pair is created:
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
ACKIN(s(X''''), s(s(s(Y'''')))) -> ACKIN(s(X''''), s(s(Y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
ACKIN(s(X''''), s(s(s(Y'''')))) -> ACKIN(s(X''''), s(s(Y'''')))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
ACKIN(s(X''''), s(s(s(Y'''')))) -> ACKIN(s(X''''), s(s(Y'''')))
POL(s(x1)) = 1 + x1 POL(ACKIN(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))