ackin(s(

u21(ackout(

R

↳Dependency Pair Analysis

ACKIN(s(X), s(Y)) -> U21(ackin(s(X),Y),X)

ACKIN(s(X), s(Y)) -> ACKIN(s(X),Y)

U21(ackout(X),Y) -> ACKIN(Y,X)

Furthermore,

R

↳DPs

→DP Problem 1

↳Polynomial Ordering

**ACKIN(s( X), s(Y)) -> ACKIN(s(X), Y)**

ackin(s(X), s(Y)) -> u21(ackin(s(X),Y),X)

u21(ackout(X),Y) -> u22(ackin(Y,X))

The following dependency pairs can be strictly oriented:

ACKIN(s(X), s(Y)) -> ACKIN(s(X),Y)

ACKIN(s(X), s(Y)) -> U21(ackin(s(X),Y),X)

Additionally, the following usable rules using the Ce-refinement can be oriented:

ackin(s(X), s(Y)) -> u21(ackin(s(X),Y),X)

u21(ackout(X),Y) -> u22(ackin(Y,X))

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(u22(x)_{1})= 0 _{ }^{ }_{ }^{ }POL(U21(x)_{1}, x_{2})= x _{1}_{ }^{ }_{ }^{ }POL(ackin(x)_{1}, x_{2})= 0 _{ }^{ }_{ }^{ }POL(u21(x)_{1}, x_{2})= 0 _{ }^{ }_{ }^{ }POL(s(x)_{1})= 1 + x _{1}_{ }^{ }_{ }^{ }POL(ACKIN(x)_{1}, x_{2})= x _{2}_{ }^{ }_{ }^{ }POL(ackout(x)_{1})= x _{1}_{ }^{ }

resulting in one new DP problem.

R

↳DPs

→DP Problem 1

↳Polo

→DP Problem 2

↳Dependency Graph

**U21(ackout( X), Y) -> ACKIN(Y, X)**

ackin(s(X), s(Y)) -> u21(ackin(s(X),Y),X)

u21(ackout(X),Y) -> u22(ackin(Y,X))

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes