R
↳Dependency Pair Analysis
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
POL(u22(x1)) = 0 POL(U21(x1, x2)) = x2 POL(ackin(x1, x2)) = 0 POL(u21(x1, x2)) = 0 POL(s(x1)) = 1 + x1 POL(ACKIN(x1, x2)) = x1 POL(ackout(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Polynomial Ordering
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
POL(u22(x1)) = 0 POL(ackin(x1, x2)) = 0 POL(u21(x1, x2)) = 0 POL(s(x1)) = 1 + x1 POL(ACKIN(x1, x2)) = x2 POL(ackout(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Dependency Graph
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))