Term Rewriting System R:
[X, ALPHA, BETA]
dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Termination of R to be shown.

R
Dependency Pair Analysis

R contains the following Dependency Pairs:

DX(plus(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)
DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(neg(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(exp(ALPHA, BETA)) -> DX(BETA)

Furthermore, R contains one SCC.

R
DPs
→DP Problem 1
Polynomial Ordering

Dependency Pairs:

DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(neg(ALPHA)) -> DX(ALPHA)
DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)

Rules:

dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

The following dependency pair can be strictly oriented:

DX(neg(ALPHA)) -> DX(ALPHA)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(exp(x1, x2)) =  x1 + x2 POL(plus(x1, x2)) =  x1 + x2 POL(DX(x1)) =  x1 POL(neg(x1)) =  1 + x1 POL(times(x1, x2)) =  x1 + x2 POL(minus(x1, x2)) =  x1 + x2 POL(div(x1, x2)) =  x1 + x2 POL(ln(x1)) =  x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polynomial Ordering

Dependency Pairs:

DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)

Rules:

dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

The following dependency pairs can be strictly oriented:

DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(exp(x1, x2)) =  x1 + x2 POL(plus(x1, x2)) =  x1 + x2 POL(DX(x1)) =  x1 POL(times(x1, x2)) =  x1 + x2 POL(minus(x1, x2)) =  1 + x1 + x2 POL(div(x1, x2)) =  x1 + x2 POL(ln(x1)) =  x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
...
→DP Problem 3
Polynomial Ordering

Dependency Pairs:

DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)

Rules:

dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

The following dependency pairs can be strictly oriented:

DX(times(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(exp(x1, x2)) =  x1 + x2 POL(plus(x1, x2)) =  x1 + x2 POL(DX(x1)) =  x1 POL(times(x1, x2)) =  1 + x1 + x2 POL(div(x1, x2)) =  x1 + x2 POL(ln(x1)) =  x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
...
→DP Problem 4
Polynomial Ordering

Dependency Pairs:

DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)

Rules:

dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

The following dependency pairs can be strictly oriented:

DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(exp(x1, x2)) =  x1 + x2 POL(plus(x1, x2)) =  1 + x1 + x2 POL(DX(x1)) =  x1 POL(div(x1, x2)) =  x1 + x2 POL(ln(x1)) =  x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
...
→DP Problem 5
Polynomial Ordering

Dependency Pairs:

DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)

Rules:

dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

The following dependency pairs can be strictly oriented:

DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(exp(x1, x2)) =  1 + x1 + x2 POL(DX(x1)) =  x1 POL(div(x1, x2)) =  x1 + x2 POL(ln(x1)) =  x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
...
→DP Problem 6
Polynomial Ordering

Dependency Pairs:

DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)

Rules:

dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

The following dependency pair can be strictly oriented:

DX(ln(ALPHA)) -> DX(ALPHA)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(DX(x1)) =  x1 POL(div(x1, x2)) =  x1 + x2 POL(ln(x1)) =  1 + x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
...
→DP Problem 7
Polynomial Ordering

Dependency Pairs:

DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)

Rules:

dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

The following dependency pairs can be strictly oriented:

DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(DX(x1)) =  x1 POL(div(x1, x2)) =  1 + x1 + x2

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
...
→DP Problem 8
Dependency Graph

Dependency Pair:

Rules:

dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes