R
↳Dependency Pair Analysis
DX(plus(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)
DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(neg(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(exp(ALPHA, BETA)) -> DX(BETA)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(neg(ALPHA)) -> DX(ALPHA)
DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)
dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
DX(neg(ALPHA)) -> DX(ALPHA)
POL(exp(x1, x2)) = x1 + x2 POL(plus(x1, x2)) = x1 + x2 POL(DX(x1)) = x1 POL(neg(x1)) = 1 + x1 POL(times(x1, x2)) = x1 + x2 POL(minus(x1, x2)) = x1 + x2 POL(div(x1, x2)) = x1 + x2 POL(ln(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)
dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)
POL(exp(x1, x2)) = x1 + x2 POL(plus(x1, x2)) = x1 + x2 POL(DX(x1)) = x1 POL(times(x1, x2)) = x1 + x2 POL(minus(x1, x2)) = 1 + x1 + x2 POL(div(x1, x2)) = x1 + x2 POL(ln(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Polynomial Ordering
DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)
dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
POL(exp(x1, x2)) = x1 + x2 POL(plus(x1, x2)) = x1 + x2 POL(DX(x1)) = x1 POL(times(x1, x2)) = 1 + x1 + x2 POL(div(x1, x2)) = x1 + x2 POL(ln(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 4
↳Polynomial Ordering
DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)
dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)
POL(exp(x1, x2)) = x1 + x2 POL(plus(x1, x2)) = 1 + x1 + x2 POL(DX(x1)) = x1 POL(div(x1, x2)) = x1 + x2 POL(ln(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 5
↳Polynomial Ordering
DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
POL(exp(x1, x2)) = 1 + x1 + x2 POL(DX(x1)) = x1 POL(div(x1, x2)) = x1 + x2 POL(ln(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 6
↳Polynomial Ordering
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
DX(ln(ALPHA)) -> DX(ALPHA)
POL(DX(x1)) = x1 POL(div(x1, x2)) = x1 + x2 POL(ln(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 7
↳Polynomial Ordering
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
POL(DX(x1)) = x1 POL(div(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 8
↳Dependency Graph
dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))