Term Rewriting System R:
[X]
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
Termination of R to be shown.
   R
     ↳Dependency Pair Analysis
R contains the following Dependency Pairs: 
F(g(X)) -> F(f(X))
F(g(X)) -> F(X)
Furthermore, R contains one SCC.
   R
     ↳DPs
       →DP Problem 1
         ↳Polynomial Ordering
Dependency Pairs:
F(g(X)) -> F(X)
F(g(X)) -> F(f(X))
Rules:
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
The following dependency pairs can be strictly oriented:
F(g(X)) -> F(X)
F(g(X)) -> F(f(X))
Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented: 
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
Used ordering: Polynomial ordering with Polynomial interpretation:
|   POL(g(x1)) | =  1 + x1   | 
|   POL(h(x1)) | =  0   | 
|   POL(f(x1)) | =  x1   | 
|   POL(F(x1)) | =  1 + x1   | 
 resulting in one new DP problem.
   R
     ↳DPs
       →DP Problem 1
         ↳Polo
           →DP Problem 2
             ↳Dependency Graph
Dependency Pair:
Rules:
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
Using the Dependency Graph resulted in no new DP problems.
Termination of R successfully shown.
Duration: 
0:00 minutes