R
↳Dependency Pair Analysis
EQ(cons(T, L), cons(Tp, Lp)) -> AND(eq(T, Tp), eq(L, Lp))
EQ(cons(T, L), cons(Tp, Lp)) -> EQ(T, Tp)
EQ(cons(T, L), cons(Tp, Lp)) -> EQ(L, Lp)
EQ(var(L), var(Lp)) -> EQ(L, Lp)
EQ(apply(T, S), apply(Tp, Sp)) -> AND(eq(T, Tp), eq(S, Sp))
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(T, Tp)
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(S, Sp)
EQ(lambda(X, T), lambda(Xp, Tp)) -> AND(eq(T, Tp), eq(X, Xp))
EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(T, Tp)
EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(X, Xp)
REN(var(L), var(K), var(Lp)) -> IF(eq(L, Lp), var(K), var(Lp))
REN(var(L), var(K), var(Lp)) -> EQ(L, Lp)
REN(X, Y, apply(T, S)) -> REN(X, Y, T)
REN(X, Y, apply(T, S)) -> REN(X, Y, S)
REN(X, Y, lambda(Z, T)) -> REN(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))
REN(X, Y, lambda(Z, T)) -> REN(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(X, Xp)
EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(T, Tp)
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(S, Sp)
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(T, Tp)
EQ(var(L), var(Lp)) -> EQ(L, Lp)
EQ(cons(T, L), cons(Tp, Lp)) -> EQ(L, Lp)
EQ(cons(T, L), cons(Tp, Lp)) -> EQ(T, Tp)
and(false, false) -> false
and(true, false) -> false
and(false, true) -> false
and(true, true) -> true
eq(nil, nil) -> true
eq(cons(T, L), nil) -> false
eq(nil, cons(T, L)) -> false
eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) -> eq(L, Lp)
eq(var(L), apply(T, S)) -> false
eq(var(L), lambda(X, T)) -> false
eq(apply(T, S), var(L)) -> false
eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) -> false
eq(lambda(X, T), var(L)) -> false
eq(lambda(X, T), apply(Tp, Sp)) -> false
eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) -> var(K)
if(false, var(K), var(L)) -> var(L)
ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
EQ(var(L), var(Lp)) -> EQ(L, Lp)
POL(apply(x1, x2)) = x1 + x2 POL(EQ(x1, x2)) = x1 POL(var(x1)) = 1 + x1 POL(cons(x1, x2)) = x1 + x2 POL(lambda(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 2
↳Polo
EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(X, Xp)
EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(T, Tp)
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(S, Sp)
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(T, Tp)
EQ(cons(T, L), cons(Tp, Lp)) -> EQ(L, Lp)
EQ(cons(T, L), cons(Tp, Lp)) -> EQ(T, Tp)
and(false, false) -> false
and(true, false) -> false
and(false, true) -> false
and(true, true) -> true
eq(nil, nil) -> true
eq(cons(T, L), nil) -> false
eq(nil, cons(T, L)) -> false
eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) -> eq(L, Lp)
eq(var(L), apply(T, S)) -> false
eq(var(L), lambda(X, T)) -> false
eq(apply(T, S), var(L)) -> false
eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) -> false
eq(lambda(X, T), var(L)) -> false
eq(lambda(X, T), apply(Tp, Sp)) -> false
eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) -> var(K)
if(false, var(K), var(L)) -> var(L)
ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
EQ(cons(T, L), cons(Tp, Lp)) -> EQ(L, Lp)
EQ(cons(T, L), cons(Tp, Lp)) -> EQ(T, Tp)
POL(apply(x1, x2)) = x1 + x2 POL(EQ(x1, x2)) = x1 POL(cons(x1, x2)) = 1 + x1 + x2 POL(lambda(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Polo
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Polo
EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(X, Xp)
EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(T, Tp)
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(S, Sp)
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(T, Tp)
and(false, false) -> false
and(true, false) -> false
and(false, true) -> false
and(true, true) -> true
eq(nil, nil) -> true
eq(cons(T, L), nil) -> false
eq(nil, cons(T, L)) -> false
eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) -> eq(L, Lp)
eq(var(L), apply(T, S)) -> false
eq(var(L), lambda(X, T)) -> false
eq(apply(T, S), var(L)) -> false
eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) -> false
eq(lambda(X, T), var(L)) -> false
eq(lambda(X, T), apply(Tp, Sp)) -> false
eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) -> var(K)
if(false, var(K), var(L)) -> var(L)
ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(X, Xp)
EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(T, Tp)
POL(apply(x1, x2)) = x1 + x2 POL(EQ(x1, x2)) = x1 POL(lambda(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Polo
...
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳Polo
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(S, Sp)
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(T, Tp)
and(false, false) -> false
and(true, false) -> false
and(false, true) -> false
and(true, true) -> true
eq(nil, nil) -> true
eq(cons(T, L), nil) -> false
eq(nil, cons(T, L)) -> false
eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) -> eq(L, Lp)
eq(var(L), apply(T, S)) -> false
eq(var(L), lambda(X, T)) -> false
eq(apply(T, S), var(L)) -> false
eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) -> false
eq(lambda(X, T), var(L)) -> false
eq(lambda(X, T), apply(Tp, Sp)) -> false
eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) -> var(K)
if(false, var(K), var(L)) -> var(L)
ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(S, Sp)
EQ(apply(T, S), apply(Tp, Sp)) -> EQ(T, Tp)
POL(apply(x1, x2)) = 1 + x1 + x2 POL(EQ(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Polo
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Polo
and(false, false) -> false
and(true, false) -> false
and(false, true) -> false
and(true, true) -> true
eq(nil, nil) -> true
eq(cons(T, L), nil) -> false
eq(nil, cons(T, L)) -> false
eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) -> eq(L, Lp)
eq(var(L), apply(T, S)) -> false
eq(var(L), lambda(X, T)) -> false
eq(apply(T, S), var(L)) -> false
eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) -> false
eq(lambda(X, T), var(L)) -> false
eq(lambda(X, T), apply(Tp, Sp)) -> false
eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) -> var(K)
if(false, var(K), var(L)) -> var(L)
ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
REN(X, Y, lambda(Z, T)) -> REN(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)
REN(X, Y, lambda(Z, T)) -> REN(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))
REN(X, Y, apply(T, S)) -> REN(X, Y, S)
REN(X, Y, apply(T, S)) -> REN(X, Y, T)
and(false, false) -> false
and(true, false) -> false
and(false, true) -> false
and(true, true) -> true
eq(nil, nil) -> true
eq(cons(T, L), nil) -> false
eq(nil, cons(T, L)) -> false
eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) -> eq(L, Lp)
eq(var(L), apply(T, S)) -> false
eq(var(L), lambda(X, T)) -> false
eq(apply(T, S), var(L)) -> false
eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) -> false
eq(lambda(X, T), var(L)) -> false
eq(lambda(X, T), apply(Tp, Sp)) -> false
eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) -> var(K)
if(false, var(K), var(L)) -> var(L)
ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
REN(X, Y, apply(T, S)) -> REN(X, Y, S)
REN(X, Y, apply(T, S)) -> REN(X, Y, T)
ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
if(true, var(K), var(L)) -> var(K)
if(false, var(K), var(L)) -> var(L)
eq(nil, nil) -> true
eq(cons(T, L), nil) -> false
eq(nil, cons(T, L)) -> false
eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) -> eq(L, Lp)
eq(var(L), apply(T, S)) -> false
eq(var(L), lambda(X, T)) -> false
eq(apply(T, S), var(L)) -> false
eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) -> false
eq(lambda(X, T), var(L)) -> false
eq(lambda(X, T), apply(Tp, Sp)) -> false
eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp))
and(false, false) -> false
and(true, false) -> false
and(false, true) -> false
and(true, true) -> true
POL(REN(x1, x2, x3)) = x3 POL(and(x1, x2)) = 0 POL(if(x1, x2, x3)) = 0 POL(apply(x1, x2)) = 1 + x1 + x2 POL(var(x1)) = 0 POL(eq(x1, x2)) = 0 POL(cons(x1, x2)) = 0 POL(false) = 0 POL(lambda(x1, x2)) = x2 POL(nil) = 0 POL(true) = 0 POL(ren(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Polynomial Ordering
REN(X, Y, lambda(Z, T)) -> REN(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)
REN(X, Y, lambda(Z, T)) -> REN(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))
and(false, false) -> false
and(true, false) -> false
and(false, true) -> false
and(true, true) -> true
eq(nil, nil) -> true
eq(cons(T, L), nil) -> false
eq(nil, cons(T, L)) -> false
eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) -> eq(L, Lp)
eq(var(L), apply(T, S)) -> false
eq(var(L), lambda(X, T)) -> false
eq(apply(T, S), var(L)) -> false
eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) -> false
eq(lambda(X, T), var(L)) -> false
eq(lambda(X, T), apply(Tp, Sp)) -> false
eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) -> var(K)
if(false, var(K), var(L)) -> var(L)
ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
REN(X, Y, lambda(Z, T)) -> REN(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)
REN(X, Y, lambda(Z, T)) -> REN(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))
ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))
if(true, var(K), var(L)) -> var(K)
if(false, var(K), var(L)) -> var(L)
eq(nil, nil) -> true
eq(cons(T, L), nil) -> false
eq(nil, cons(T, L)) -> false
eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) -> eq(L, Lp)
eq(var(L), apply(T, S)) -> false
eq(var(L), lambda(X, T)) -> false
eq(apply(T, S), var(L)) -> false
eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) -> false
eq(lambda(X, T), var(L)) -> false
eq(lambda(X, T), apply(Tp, Sp)) -> false
eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp))
and(false, false) -> false
and(true, false) -> false
and(false, true) -> false
and(true, true) -> true
POL(REN(x1, x2, x3)) = x3 POL(and(x1, x2)) = 0 POL(if(x1, x2, x3)) = 0 POL(apply(x1, x2)) = 0 POL(var(x1)) = 0 POL(eq(x1, x2)) = 0 POL(cons(x1, x2)) = 0 POL(false) = 0 POL(lambda(x1, x2)) = 1 + x2 POL(nil) = 0 POL(true) = 0 POL(ren(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Polo
...
→DP Problem 8
↳Dependency Graph
and(false, false) -> false
and(true, false) -> false
and(false, true) -> false
and(true, true) -> true
eq(nil, nil) -> true
eq(cons(T, L), nil) -> false
eq(nil, cons(T, L)) -> false
eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp))
eq(var(L), var(Lp)) -> eq(L, Lp)
eq(var(L), apply(T, S)) -> false
eq(var(L), lambda(X, T)) -> false
eq(apply(T, S), var(L)) -> false
eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp))
eq(apply(T, S), lambda(X, Tp)) -> false
eq(lambda(X, T), var(L)) -> false
eq(lambda(X, T), apply(Tp, Sp)) -> false
eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp))
if(true, var(K), var(L)) -> var(K)
if(false, var(K), var(L)) -> var(L)
ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp))
ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S))
ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)))