R
↳Overlay and local confluence Check
R
↳OC
→TRS2
↳Dependency Pair Analysis
MIN(s(X), s(Y)) -> MIN(X, Y)
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MIN(X, Y)
LOG(s(s(X))) -> LOG(s(quot(X, s(s(0)))))
LOG(s(s(X))) -> QUOT(X, s(s(0)))
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
MIN(s(X), s(Y)) -> MIN(X, Y)
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
log(s(0)) -> 0
log(s(s(X))) -> s(log(s(quot(X, s(s(0))))))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
...
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
MIN(s(X), s(Y)) -> MIN(X, Y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
log(s(0)) -> 0
log(s(s(X))) -> s(log(s(quot(X, s(s(0))))))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
...
→DP Problem 5
↳Negative Polynomial Order
→DP Problem 3
↳UsableRules
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
min(s(X), s(Y)) -> min(X, Y)
min(X, 0) -> X
innermost
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
min(s(X), s(Y)) -> min(X, Y)
min(X, 0) -> X
POL( QUOT(x1, x2) ) = x1
POL( s(x1) ) = x1 + 1
POL( min(x1, x2) ) = x1
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
...
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳UsableRules
min(s(X), s(Y)) -> min(X, Y)
min(X, 0) -> X
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
LOG(s(s(X))) -> LOG(s(quot(X, s(s(0)))))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
log(s(0)) -> 0
log(s(s(X))) -> s(log(s(quot(X, s(s(0))))))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
...
→DP Problem 7
↳Negative Polynomial Order
LOG(s(s(X))) -> LOG(s(quot(X, s(s(0)))))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
min(s(X), s(Y)) -> min(X, Y)
min(X, 0) -> X
innermost
LOG(s(s(X))) -> LOG(s(quot(X, s(s(0)))))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
min(s(X), s(Y)) -> min(X, Y)
min(X, 0) -> X
POL( LOG(x1) ) = x1
POL( s(x1) ) = x1 + 1
POL( quot(x1, x2) ) = x1
POL( 0 ) = 0
POL( min(x1, x2) ) = x1
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
...
→DP Problem 8
↳Dependency Graph
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
min(s(X), s(Y)) -> min(X, Y)
min(X, 0) -> X
innermost