Term Rewriting System R:
[X, Y, Z]
div(X, e) -> i(X)
div(div(X, Y), Z) -> div(Y, div(i(X), Z))
i(div(X, Y)) -> div(Y, X)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

DIV(X, e) -> I(X)
DIV(div(X, Y), Z) -> DIV(Y, div(i(X), Z))
DIV(div(X, Y), Z) -> DIV(i(X), Z)
DIV(div(X, Y), Z) -> I(X)
I(div(X, Y)) -> DIV(Y, X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

DIV(div(X, Y), Z) -> I(X)
DIV(div(X, Y), Z) -> DIV(i(X), Z)
DIV(div(X, Y), Z) -> DIV(Y, div(i(X), Z))
I(div(X, Y)) -> DIV(Y, X)
DIV(X, e) -> I(X)


Rules:


div(X, e) -> i(X)
div(div(X, Y), Z) -> div(Y, div(i(X), Z))
i(div(X, Y)) -> div(Y, X)





The following dependency pairs can be strictly oriented:

DIV(div(X, Y), Z) -> I(X)
DIV(div(X, Y), Z) -> DIV(i(X), Z)
DIV(div(X, Y), Z) -> DIV(Y, div(i(X), Z))
I(div(X, Y)) -> DIV(Y, X)


Additionally, the following usable rules using the Ce-refinement can be oriented:

i(div(X, Y)) -> div(Y, X)
div(X, e) -> i(X)
div(div(X, Y), Z) -> div(Y, div(i(X), Z))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  x1  
  POL(i(x1))=  x1  
  POL(e)=  0  
  POL(DIV(x1, x2))=  x1  
  POL(div(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Dependency Graph


Dependency Pair:

DIV(X, e) -> I(X)


Rules:


div(X, e) -> i(X)
div(div(X, Y), Z) -> div(Y, div(i(X), Z))
i(div(X, Y)) -> div(Y, X)





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes