Term Rewriting System R:
[X]
f(a) -> f(c(a))
f(c(X)) -> X
f(c(a)) -> f(d(b))
f(a) -> f(d(a))
f(d(X)) -> X
f(c(b)) -> f(d(a))
e(g(X)) -> e(X)

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

F(a) -> F(c(a))
F(c(a)) -> F(d(b))
F(a) -> F(d(a))
F(c(b)) -> F(d(a))
E(g(X)) -> E(X)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`

Dependency Pair:

E(g(X)) -> E(X)

Rules:

f(a) -> f(c(a))
f(c(X)) -> X
f(c(a)) -> f(d(b))
f(a) -> f(d(a))
f(d(X)) -> X
f(c(b)) -> f(d(a))
e(g(X)) -> e(X)

The following dependency pair can be strictly oriented:

E(g(X)) -> E(X)

The following rules can be oriented:

f(a) -> f(c(a))
f(c(X)) -> X
f(c(a)) -> f(d(b))
f(a) -> f(d(a))
f(d(X)) -> X
f(c(b)) -> f(d(a))
e(g(X)) -> e(X)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(c(x1)) =  x1 POL(E(x1)) =  x1 POL(g(x1)) =  1 + x1 POL(e(x1)) =  x1 POL(b) =  0 POL(d(x1)) =  x1 POL(a) =  0 POL(f(x1)) =  x1

resulting in one new DP problem.
Used Argument Filtering System:
E(x1) -> E(x1)
g(x1) -> g(x1)
f(x1) -> f(x1)
c(x1) -> c(x1)
d(x1) -> d(x1)
e(x1) -> e(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 2`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

f(a) -> f(c(a))
f(c(X)) -> X
f(c(a)) -> f(d(b))
f(a) -> f(d(a))
f(d(X)) -> X
f(c(b)) -> f(d(a))
e(g(X)) -> e(X)

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes