Term Rewriting System R:
[X, Y]
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

MINUS(s(X), s(Y)) -> P(minus(X, Y))
MINUS(s(X), s(Y)) -> MINUS(X, Y)
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
DIV(s(X), s(Y)) -> MINUS(X, Y)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`

Dependency Pair:

MINUS(s(X), s(Y)) -> MINUS(X, Y)

Rules:

minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))

The following dependency pair can be strictly oriented:

MINUS(s(X), s(Y)) -> MINUS(X, Y)

Additionally, the following rules can be oriented:

minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(0) =  0 POL(minus(x1, x2)) =  x1 POL(MINUS(x1, x2)) =  1 + x1 POL(s(x1)) =  1 + x1 POL(div(x1, x2)) =  x1 POL(p(x1)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 3`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Polo`

Dependency Pair:

Rules:

minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polynomial Ordering`

Dependency Pair:

DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))

Rules:

minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))

The following dependency pair can be strictly oriented:

DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))

Additionally, the following rules can be oriented:

minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(0) =  0 POL(DIV(x1, x2)) =  1 + x1 POL(minus(x1, x2)) =  x1 POL(s(x1)) =  1 + x1 POL(div(x1, x2)) =  x1 POL(p(x1)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 4`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes