R
↳Overlay and local confluence Check
R
↳OC
→TRS2
↳Dependency Pair Analysis
MINUS(X, s(Y)) -> PRED(minus(X, Y))
MINUS(X, s(Y)) -> MINUS(X, Y)
LE(s(X), s(Y)) -> LE(X, Y)
GCD(s(X), s(Y)) -> IF(le(Y, X), s(X), s(Y))
GCD(s(X), s(Y)) -> LE(Y, X)
IF(true, s(X), s(Y)) -> GCD(minus(X, Y), s(Y))
IF(true, s(X), s(Y)) -> MINUS(X, Y)
IF(false, s(X), s(Y)) -> GCD(minus(Y, X), s(X))
IF(false, s(X), s(Y)) -> MINUS(Y, X)
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
MINUS(X, s(Y)) -> MINUS(X, Y)
minus(X, s(Y)) -> pred(minus(X, Y))
minus(X, 0) -> X
pred(s(X)) -> X
le(s(X), s(Y)) -> le(X, Y)
le(s(X), 0) -> false
le(0, Y) -> true
gcd(0, Y) -> 0
gcd(s(X), 0) -> s(X)
gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
...
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
MINUS(X, s(Y)) -> MINUS(X, Y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
LE(s(X), s(Y)) -> LE(X, Y)
minus(X, s(Y)) -> pred(minus(X, Y))
minus(X, 0) -> X
pred(s(X)) -> X
le(s(X), s(Y)) -> le(X, Y)
le(s(X), 0) -> false
le(0, Y) -> true
gcd(0, Y) -> 0
gcd(s(X), 0) -> s(X)
gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
...
→DP Problem 5
↳Size-Change Principle
→DP Problem 3
↳UsableRules
LE(s(X), s(Y)) -> LE(X, Y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
IF(false, s(X), s(Y)) -> GCD(minus(Y, X), s(X))
IF(true, s(X), s(Y)) -> GCD(minus(X, Y), s(Y))
GCD(s(X), s(Y)) -> IF(le(Y, X), s(X), s(Y))
minus(X, s(Y)) -> pred(minus(X, Y))
minus(X, 0) -> X
pred(s(X)) -> X
le(s(X), s(Y)) -> le(X, Y)
le(s(X), 0) -> false
le(0, Y) -> true
gcd(0, Y) -> 0
gcd(s(X), 0) -> s(X)
gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
...
→DP Problem 6
↳Negative Polynomial Order
IF(false, s(X), s(Y)) -> GCD(minus(Y, X), s(X))
IF(true, s(X), s(Y)) -> GCD(minus(X, Y), s(Y))
GCD(s(X), s(Y)) -> IF(le(Y, X), s(X), s(Y))
minus(X, 0) -> X
minus(X, s(Y)) -> pred(minus(X, Y))
pred(s(X)) -> X
le(s(X), 0) -> false
le(0, Y) -> true
le(s(X), s(Y)) -> le(X, Y)
innermost
IF(false, s(X), s(Y)) -> GCD(minus(Y, X), s(X))
IF(true, s(X), s(Y)) -> GCD(minus(X, Y), s(Y))
minus(X, 0) -> X
minus(X, s(Y)) -> pred(minus(X, Y))
pred(s(X)) -> X
le(s(X), 0) -> false
le(0, Y) -> true
le(s(X), s(Y)) -> le(X, Y)
POL( IF(x1, ..., x3) ) = x2 + x3
POL( s(x1) ) = x1 + 1
POL( GCD(x1, x2) ) = x1 + x2
POL( minus(x1, x2) ) = x1
POL( pred(x1) ) = x1
POL( le(x1, x2) ) = 0
POL( false ) = 0
POL( true ) = 0
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
...
→DP Problem 7
↳Dependency Graph
GCD(s(X), s(Y)) -> IF(le(Y, X), s(X), s(Y))
minus(X, 0) -> X
minus(X, s(Y)) -> pred(minus(X, Y))
pred(s(X)) -> X
le(s(X), 0) -> false
le(0, Y) -> true
le(s(X), s(Y)) -> le(X, Y)
innermost