R
↳Dependency Pair Analysis
MINUS(X, s(Y)) -> PRED(minus(X, Y))
MINUS(X, s(Y)) -> MINUS(X, Y)
LE(s(X), s(Y)) -> LE(X, Y)
GCD(s(X), s(Y)) -> IF(le(Y, X), s(X), s(Y))
GCD(s(X), s(Y)) -> LE(Y, X)
IF(true, s(X), s(Y)) -> GCD(minus(X, Y), s(Y))
IF(true, s(X), s(Y)) -> MINUS(X, Y)
IF(false, s(X), s(Y)) -> GCD(minus(Y, X), s(X))
IF(false, s(X), s(Y)) -> MINUS(Y, X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳Remaining
MINUS(X, s(Y)) -> MINUS(X, Y)
minus(X, s(Y)) -> pred(minus(X, Y))
minus(X, 0) -> X
pred(s(X)) -> X
le(s(X), s(Y)) -> le(X, Y)
le(s(X), 0) -> false
le(0, Y) -> true
gcd(0, Y) -> 0
gcd(s(X), 0) -> s(X)
gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X))
MINUS(X, s(Y)) -> MINUS(X, Y)
trivial
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳Remaining
minus(X, s(Y)) -> pred(minus(X, Y))
minus(X, 0) -> X
pred(s(X)) -> X
le(s(X), s(Y)) -> le(X, Y)
le(s(X), 0) -> false
le(0, Y) -> true
gcd(0, Y) -> 0
gcd(s(X), 0) -> s(X)
gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳Remaining
LE(s(X), s(Y)) -> LE(X, Y)
minus(X, s(Y)) -> pred(minus(X, Y))
minus(X, 0) -> X
pred(s(X)) -> X
le(s(X), s(Y)) -> le(X, Y)
le(s(X), 0) -> false
le(0, Y) -> true
gcd(0, Y) -> 0
gcd(s(X), 0) -> s(X)
gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X))
LE(s(X), s(Y)) -> LE(X, Y)
trivial
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Remaining
minus(X, s(Y)) -> pred(minus(X, Y))
minus(X, 0) -> X
pred(s(X)) -> X
le(s(X), s(Y)) -> le(X, Y)
le(s(X), 0) -> false
le(0, Y) -> true
gcd(0, Y) -> 0
gcd(s(X), 0) -> s(X)
gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Remaining Obligation(s)
IF(false, s(X), s(Y)) -> GCD(minus(Y, X), s(X))
IF(true, s(X), s(Y)) -> GCD(minus(X, Y), s(Y))
GCD(s(X), s(Y)) -> IF(le(Y, X), s(X), s(Y))
minus(X, s(Y)) -> pred(minus(X, Y))
minus(X, 0) -> X
pred(s(X)) -> X
le(s(X), s(Y)) -> le(X, Y)
le(s(X), 0) -> false
le(0, Y) -> true
gcd(0, Y) -> 0
gcd(s(X), 0) -> s(X)
gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X))