Term Rewriting System R:
[X, Y, N, M]
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

EQ(s(X), s(Y)) -> EQ(X, Y)
RM(N, add(M, X)) -> IFRM(eq(N, M), N, add(M, X))
RM(N, add(M, X)) -> EQ(N, M)
IFRM(true, N, add(M, X)) -> RM(N, X)
IFRM(false, N, add(M, X)) -> RM(N, X)
PURGE(add(N, X)) -> PURGE(rm(N, X))
PURGE(add(N, X)) -> RM(N, X)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
AFS
       →DP Problem 3
Nar


Dependency Pair:

EQ(s(X), s(Y)) -> EQ(X, Y)


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))





On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

EQ(s(X), s(Y)) -> EQ(X, Y)
one new Dependency Pair is created:

EQ(s(s(X'')), s(s(Y''))) -> EQ(s(X''), s(Y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
AFS
       →DP Problem 3
Nar


Dependency Pair:

EQ(s(s(X'')), s(s(Y''))) -> EQ(s(X''), s(Y''))


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))





On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

EQ(s(s(X'')), s(s(Y''))) -> EQ(s(X''), s(Y''))
one new Dependency Pair is created:

EQ(s(s(s(X''''))), s(s(s(Y'''')))) -> EQ(s(s(X'''')), s(s(Y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Nar


Dependency Pair:

EQ(s(s(s(X''''))), s(s(s(Y'''')))) -> EQ(s(s(X'''')), s(s(Y'''')))


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))





The following dependency pair can be strictly oriented:

EQ(s(s(s(X''''))), s(s(s(Y'''')))) -> EQ(s(s(X'''')), s(s(Y'''')))


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
EQ(x1, x2) -> EQ(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
Nar


Dependency Pair:


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pairs:

IFRM(false, N, add(M, X)) -> RM(N, X)
IFRM(true, N, add(M, X)) -> RM(N, X)
RM(N, add(M, X)) -> IFRM(eq(N, M), N, add(M, X))


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))





The following dependency pairs can be strictly oriented:

IFRM(false, N, add(M, X)) -> RM(N, X)
IFRM(true, N, add(M, X)) -> RM(N, X)


The following usable rules using the Ce-refinement can be oriented:

eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
eq > true
0 > false

resulting in one new DP problem.
Used Argument Filtering System:
IFRM(x1, x2, x3) -> x3
add(x1, x2) -> add(x1, x2)
RM(x1, x2) -> x2
eq(x1, x2) -> eq(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
AFS
           →DP Problem 7
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:

RM(N, add(M, X)) -> IFRM(eq(N, M), N, add(M, X))


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
AFS
       →DP Problem 3
Narrowing Transformation


Dependency Pair:

PURGE(add(N, X)) -> PURGE(rm(N, X))


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

PURGE(add(N, X)) -> PURGE(rm(N, X))
two new Dependency Pairs are created:

PURGE(add(N'', nil)) -> PURGE(nil)
PURGE(add(N'', add(M', X''))) -> PURGE(ifrm(eq(N'', M'), N'', add(M', X'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Argument Filtering and Ordering


Dependency Pair:

PURGE(add(N'', add(M', X''))) -> PURGE(ifrm(eq(N'', M'), N'', add(M', X'')))


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))





The following dependency pair can be strictly oriented:

PURGE(add(N'', add(M', X''))) -> PURGE(ifrm(eq(N'', M'), N'', add(M', X'')))


The following usable rules using the Ce-refinement can be oriented:

ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
nil > false
{eq, true} > false
add > false
rm > false
PURGE > false
0 > false
ifrm > false
s > false

resulting in one new DP problem.
Used Argument Filtering System:
PURGE(x1) -> PURGE(x1)
add(x1, x2) -> add(x1, x2)
ifrm(x1, x2, x3) -> x3
rm(x1, x2) -> x2
eq(x1, x2) -> eq(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
AFS
             ...
               →DP Problem 9
Dependency Graph


Dependency Pair:


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:01 minutes