Term Rewriting System R:
[X, Y, Z, X1, X2, X3, X4]
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))
PLUS(s(X), plus(Y, Z)) -> PLUS(s(s(Y)), Z)
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X2, X4)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X2, X4)
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X), plus(Y, Z)) -> PLUS(s(s(Y)), Z)
PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))


Rules:


plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))





The following dependency pairs can be strictly oriented:

PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X2, X4)
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X), plus(Y, Z)) -> PLUS(s(s(Y)), Z)


The following usable rules w.r.t. to the AFS can be oriented:

plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))


Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> x2
plus(x1, x2) -> plus(x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Argument Filtering and Ordering


Dependency Pairs:

PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))


Rules:


plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))





The following dependency pairs can be strictly oriented:

PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))


The following usable rules w.r.t. to the AFS can be oriented:

plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))


Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)
plus(x1, x2) -> x2


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
AFS
             ...
               →DP Problem 3
Dependency Graph


Dependency Pair:


Rules:


plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes