Term Rewriting System R:
[Y, U, V, X, W, Z]
concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

CONCAT(cons(U, V), Y) -> CONCAT(V, Y)
LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))
LESSLEAVES(cons(U, V), cons(W, Z)) -> CONCAT(U, V)
LESSLEAVES(cons(U, V), cons(W, Z)) -> CONCAT(W, Z)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
Remaining


Dependency Pair:

CONCAT(cons(U, V), Y) -> CONCAT(V, Y)


Rules:


concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))





The following dependency pair can be strictly oriented:

CONCAT(cons(U, V), Y) -> CONCAT(V, Y)


The following rules can be oriented:

concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{concat, cons, true} > false
lessleaves > false
CONCAT > false
leaf > false

resulting in one new DP problem.
Used Argument Filtering System:
CONCAT(x1, x2) -> CONCAT(x1, x2)
cons(x1, x2) -> cons(x1, x2)
concat(x1, x2) -> concat(x1, x2)
lessleaves(x1, x2) -> lessleaves(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Remaining


Dependency Pair:


Rules:


concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pair:

LESSLEAVES(cons(U, V), cons(W, Z)) -> LESSLEAVES(concat(U, V), concat(W, Z))


Rules:


concat(leaf, Y) -> Y
concat(cons(U, V), Y) -> cons(U, concat(V, Y))
lessleaves(X, leaf) -> false
lessleaves(leaf, cons(W, Z)) -> true
lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))




Termination of R could not be shown.
Duration:
0:00 minutes