R
↳Dependency Pair Analysis
ACKIN(s(X), 0) -> U11(ackin(X, s(0)))
ACKIN(s(X), 0) -> ACKIN(X, s(0))
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> U22(ackin(Y, X))
U21(ackout(X), Y) -> ACKIN(Y, X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ACKIN(s(X), 0) -> ACKIN(X, s(0))
ackin(0, X) -> ackout(s(X))
ackin(s(X), 0) -> u11(ackin(X, s(0)))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u11(ackout(X)) -> ackout(X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
u22(ackout(X)) -> ackout(X)
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ACKIN(s(X), 0) -> ACKIN(X, s(0))
POL(0) = 0 POL(u11(x1)) = 0 POL(u22(x1)) = 0 POL(U21(x1, x2)) = x2 POL(ackin(x1, x2)) = 0 POL(u21(x1, x2)) = 0 POL(s(x1)) = 1 + x1 POL(ACKIN(x1, x2)) = x1 POL(ackout(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
ackin(0, X) -> ackout(s(X))
ackin(s(X), 0) -> u11(ackin(X, s(0)))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u11(ackout(X)) -> ackout(X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
u22(ackout(X)) -> ackout(X)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Forward Instantiation Transformation
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
ackin(0, X) -> ackout(s(X))
ackin(s(X), 0) -> u11(ackin(X, s(0)))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u11(ackout(X)) -> ackout(X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
u22(ackout(X)) -> ackout(X)
one new Dependency Pair is created:
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Forward Instantiation Transformation
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
ackin(0, X) -> ackout(s(X))
ackin(s(X), 0) -> u11(ackin(X, s(0)))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u11(ackout(X)) -> ackout(X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
u22(ackout(X)) -> ackout(X)
one new Dependency Pair is created:
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
ACKIN(s(X''''), s(s(s(Y'''')))) -> ACKIN(s(X''''), s(s(Y'''')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Polynomial Ordering
ACKIN(s(X''''), s(s(s(Y'''')))) -> ACKIN(s(X''''), s(s(Y'''')))
ackin(0, X) -> ackout(s(X))
ackin(s(X), 0) -> u11(ackin(X, s(0)))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u11(ackout(X)) -> ackout(X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
u22(ackout(X)) -> ackout(X)
ACKIN(s(X''''), s(s(s(Y'''')))) -> ACKIN(s(X''''), s(s(Y'''')))
POL(s(x1)) = 1 + x1 POL(ACKIN(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 6
↳Dependency Graph
ackin(0, X) -> ackout(s(X))
ackin(s(X), 0) -> u11(ackin(X, s(0)))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u11(ackout(X)) -> ackout(X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
u22(ackout(X)) -> ackout(X)