R
↳Dependency Pair Analysis
F(a, empty) -> G(a, empty)
F(a, cons(x, k)) -> F(cons(x, a), k)
G(cons(x, k), d) -> G(k, cons(x, d))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
G(cons(x, k), d) -> G(k, cons(x, d))
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
G(cons(x, k), d) -> G(k, cons(x, d))
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
POL(g(x1, x2)) = x1 + x2 POL(cons(x1, x2)) = 1 + x2 POL(G(x1, x2)) = x1 POL(f(x1, x2)) = x1 + x2 POL(empty) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
F(a, cons(x, k)) -> F(cons(x, a), k)
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
F(a, cons(x, k)) -> F(cons(x, a), k)
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))
POL(g(x1, x2)) = x1 + x2 POL(cons(x1, x2)) = 1 + x2 POL(f(x1, x2)) = x1 + x2 POL(empty) = 0 POL(F(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Dependency Graph
f(a, empty) -> g(a, empty)
f(a, cons(x, k)) -> f(cons(x, a), k)
g(empty, d) -> d
g(cons(x, k), d) -> g(k, cons(x, d))