f(empty,

f(cons(

g(

R

↳Dependency Pair Analysis

F(cons(x,k),l) -> G(k,l, cons(x,k))

G(a,b,c) -> F(a, cons(b,c))

Furthermore,

R

↳DPs

→DP Problem 1

↳Polynomial Ordering

**G( a, b, c) -> F(a, cons(b, c))**

f(empty,l) ->l

f(cons(x,k),l) -> g(k,l, cons(x,k))

g(a,b,c) -> f(a, cons(b,c))

The following dependency pair can be strictly oriented:

F(cons(x,k),l) -> G(k,l, cons(x,k))

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(G(x)_{1}, x_{2}, x_{3})= x _{1}_{ }^{ }_{ }^{ }POL(cons(x)_{1}, x_{2})= 1 + x _{2}_{ }^{ }_{ }^{ }POL(F(x)_{1}, x_{2})= x _{1}_{ }^{ }

resulting in one new DP problem.

R

↳DPs

→DP Problem 1

↳Polo

→DP Problem 2

↳Dependency Graph

**G( a, b, c) -> F(a, cons(b, c))**

f(empty,l) ->l

f(cons(x,k),l) -> g(k,l, cons(x,k))

g(a,b,c) -> f(a, cons(b,c))

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes