R
↳Dependency Pair Analysis
F(cons(x, k), l) -> G(k, l, cons(x, k))
G(a, b, c) -> F(a, cons(b, c))
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
G(a, b, c) -> F(a, cons(b, c))
F(cons(x, k), l) -> G(k, l, cons(x, k))
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))
one new Dependency Pair is created:
F(cons(x, k), l) -> G(k, l, cons(x, k))
F(cons(x', k'), cons(b'', c'')) -> G(k', cons(b'', c''), cons(x', k'))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Instantiation Transformation
F(cons(x', k'), cons(b'', c'')) -> G(k', cons(b'', c''), cons(x', k'))
G(a, b, c) -> F(a, cons(b, c))
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))
one new Dependency Pair is created:
G(a, b, c) -> F(a, cons(b, c))
G(a', cons(b'''', c''''), cons(x''', k'''')) -> F(a', cons(cons(b'''', c''''), cons(x''', k'''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
...
→DP Problem 3
↳Instantiation Transformation
G(a', cons(b'''', c''''), cons(x''', k'''')) -> F(a', cons(cons(b'''', c''''), cons(x''', k'''')))
F(cons(x', k'), cons(b'', c'')) -> G(k', cons(b'', c''), cons(x', k'))
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))
one new Dependency Pair is created:
F(cons(x', k'), cons(b'', c'')) -> G(k', cons(b'', c''), cons(x', k'))
F(cons(x'', k''), cons(cons(b'''''', c''''''), cons(x''''', k''''''))) -> G(k'', cons(cons(b'''''', c''''''), cons(x''''', k'''''')), cons(x'', k''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
...
→DP Problem 4
↳Instantiation Transformation
F(cons(x'', k''), cons(cons(b'''''', c''''''), cons(x''''', k''''''))) -> G(k'', cons(cons(b'''''', c''''''), cons(x''''', k'''''')), cons(x'', k''))
G(a', cons(b'''', c''''), cons(x''', k'''')) -> F(a', cons(cons(b'''', c''''), cons(x''', k'''')))
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))
one new Dependency Pair is created:
G(a', cons(b'''', c''''), cons(x''', k'''')) -> F(a', cons(cons(b'''', c''''), cons(x''', k'''')))
G(a'', cons(cons(b'''''''', c''''''''), cons(x''''''', k'''''''')), cons(x''''', k''''')) -> F(a'', cons(cons(cons(b'''''''', c''''''''), cons(x''''''', k'''''''')), cons(x''''', k''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
...
→DP Problem 5
↳Polynomial Ordering
G(a'', cons(cons(b'''''''', c''''''''), cons(x''''''', k'''''''')), cons(x''''', k''''')) -> F(a'', cons(cons(cons(b'''''''', c''''''''), cons(x''''''', k'''''''')), cons(x''''', k''''')))
F(cons(x'', k''), cons(cons(b'''''', c''''''), cons(x''''', k''''''))) -> G(k'', cons(cons(b'''''', c''''''), cons(x''''', k'''''')), cons(x'', k''))
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))
F(cons(x'', k''), cons(cons(b'''''', c''''''), cons(x''''', k''''''))) -> G(k'', cons(cons(b'''''', c''''''), cons(x''''', k'''''')), cons(x'', k''))
POL(G(x1, x2, x3)) = x1 POL(cons(x1, x2)) = 1 + x2 POL(F(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
...
→DP Problem 6
↳Dependency Graph
G(a'', cons(cons(b'''''''', c''''''''), cons(x''''''', k'''''''')), cons(x''''', k''''')) -> F(a'', cons(cons(cons(b'''''''', c''''''''), cons(x''''''', k'''''''')), cons(x''''', k''''')))
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))