Term Rewriting System R:
[l, x, k, a, b, c]
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
F(cons(x, k), l) -> G(k, l, cons(x, k))
G(a, b, c) -> F(a, cons(b, c))
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
Dependency Pairs:
G(a, b, c) -> F(a, cons(b, c))
F(cons(x, k), l) -> G(k, l, cons(x, k))
Rules:
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))
The following dependency pair can be strictly oriented:
G(a, b, c) -> F(a, cons(b, c))
There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
POL(G(x1, x2, x3)) | = 1 + x1 |
POL(cons(x1, x2)) | = 1 + x2 |
POL(F(x1, x2)) | = x1 |
resulting in one new DP problem.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
Dependency Pair:
F(cons(x, k), l) -> G(k, l, cons(x, k))
Rules:
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))
Using the Dependency Graph resulted in no new DP problems.
Termination of R successfully shown.
Duration:
0:00 minutes