Term Rewriting System R:
[l, x, k, a, b, c]
f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(cons(x, k), l) -> G(k, l, cons(x, k))
G(a, b, c) -> F(a, cons(b, c))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

G(a, b, c) -> F(a, cons(b, c))
F(cons(x, k), l) -> G(k, l, cons(x, k))


Rules:


f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))





The following dependency pair can be strictly oriented:

F(cons(x, k), l) -> G(k, l, cons(x, k))


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(G(x1, x2, x3))=  x1  
  POL(cons(x1, x2))=  1 + x2  
  POL(F(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Dependency Graph


Dependency Pair:

G(a, b, c) -> F(a, cons(b, c))


Rules:


f(empty, l) -> l
f(cons(x, k), l) -> g(k, l, cons(x, k))
g(a, b, c) -> f(a, cons(b, c))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes