Term Rewriting System R:
[ls, a, x, k]
rev(ls) -> r1(ls, empty)
r1(empty, a) -> a
r1(cons(x, k), a) -> r1(k, cons(x, a))
Termination of R to be shown.
   R
     ↳Dependency Pair Analysis
R contains the following Dependency Pairs: 
REV(ls) -> R1(ls, empty)
R1(cons(x, k), a) -> R1(k, cons(x, a))
Furthermore, R contains one SCC.
   R
     ↳DPs
       →DP Problem 1
         ↳Argument Filtering and Ordering
Dependency Pair:
R1(cons(x, k), a) -> R1(k, cons(x, a))
Rules:
rev(ls) -> r1(ls, empty)
r1(empty, a) -> a
r1(cons(x, k), a) -> r1(k, cons(x, a))
The following dependency pair can be strictly oriented:
R1(cons(x, k), a) -> R1(k, cons(x, a))
There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
| POL(cons(x1, x2)) | =  1 + x1 + x2 | 
 resulting in one new DP problem.
Used Argument Filtering System: R1(x1, x2) -> x1
cons(x1, x2) -> cons(x1, x2)
   R
     ↳DPs
       →DP Problem 1
         ↳AFS
           →DP Problem 2
             ↳Dependency Graph
Dependency Pair:
Rules:
rev(ls) -> r1(ls, empty)
r1(empty, a) -> a
r1(cons(x, k), a) -> r1(k, cons(x, a))
Using the Dependency Graph resulted in no new DP problems.
Termination of R successfully shown.
Duration: 
0:00 minutes