R
↳Dependency Pair Analysis
F(x, f(a, y)) -> F(f(y, f(f(a, a), a)), x)
F(x, f(a, y)) -> F(y, f(f(a, a), a))
F(x, f(a, y)) -> F(f(a, a), a)
F(x, f(a, y)) -> F(a, a)
R
↳DPs
→DP Problem 1
↳Semantic Labelling
F(x, f(a, y)) -> F(f(y, f(f(a, a), a)), x)
f(x, f(a, y)) -> f(f(y, f(f(a, a), a)), x)
f(x0, x1) = 0 a = 1 F(x0, x1) = 1
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳Modular Removal of Rules
F00(x, f11(a, y)) -> F00(f10(y, f01(f11(a, a), a)), x)
F00(x, f10(a, y)) -> F00(f00(y, f01(f11(a, a), a)), x)
f00(x, f10(a, y)) -> f00(f00(y, f01(f11(a, a), a)), x)
f00(x, f11(a, y)) -> f00(f10(y, f01(f11(a, a), a)), x)
f10(x, f10(a, y)) -> f01(f00(y, f01(f11(a, a), a)), x)
f10(x, f11(a, y)) -> f01(f10(y, f01(f11(a, a), a)), x)
POL(f_11(x1, x2)) = x1 + x2 POL(F_00(x1, x2)) = 1 + x1 + x2 POL(f_00(x1, x2)) = x1 + x2 POL(f_10(x1, x2)) = x1 + x2 POL(f_01(x1, x2)) = x1 + x2 POL(a) = 0
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 3
↳Unlabel
F00(x, f10(a, y)) -> F00(f00(y, f01(f11(a, a), a)), x)
F00(x, f11(a, y)) -> F00(f10(y, f01(f11(a, a), a)), x)
none
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 4
↳Semantic Labelling
F(x, f(a, y)) -> F(f(y, f(f(a, a), a)), x)
none
F(x0, x1) = 1 f(x0, x1) = 1 + x1 a = 0
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 5
↳Modular Removal of Rules
F00(x, f01(a, y)) -> F00(f11(y, f10(f00(a, a), a)), x)
none
POL(f_11(x1, x2)) = x1 + x2 POL(F_00(x1, x2)) = 1 + x1 + x2 POL(f_00(x1, x2)) = x1 + x2 POL(f_10(x1, x2)) = x1 + x2 POL(f_01(x1, x2)) = x1 + x2 POL(a) = 0
F00(x, f01(a, y)) -> F00(f11(y, f10(f00(a, a), a)), x)
Termination of R successfully shown.
Duration:
0:00 minutes