R
↳Dependency Pair Analysis
-'(s(x), s(y)) -> -'(x, y)
LT(s(x), s(y)) -> LT(x, y)
DIV(s(x), s(y)) -> IF(lt(x, y), 0, s(div(-(x, y), s(y))))
DIV(s(x), s(y)) -> LT(x, y)
DIV(s(x), s(y)) -> DIV(-(x, y), s(y))
DIV(s(x), s(y)) -> -'(x, y)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
-'(s(x), s(y)) -> -'(x, y)
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
lt(x, 0) -> false
lt(0, s(y)) -> true
lt(s(x), s(y)) -> lt(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
div(x, 0) -> 0
div(0, y) -> 0
div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y))))
-'(s(x), s(y)) -> -'(x, y)
POL(-'(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
lt(x, 0) -> false
lt(0, s(y)) -> true
lt(s(x), s(y)) -> lt(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
div(x, 0) -> 0
div(0, y) -> 0
div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
LT(s(x), s(y)) -> LT(x, y)
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
lt(x, 0) -> false
lt(0, s(y)) -> true
lt(s(x), s(y)) -> lt(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
div(x, 0) -> 0
div(0, y) -> 0
div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y))))
LT(s(x), s(y)) -> LT(x, y)
POL(LT(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Polo
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
lt(x, 0) -> false
lt(0, s(y)) -> true
lt(s(x), s(y)) -> lt(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
div(x, 0) -> 0
div(0, y) -> 0
div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
DIV(s(x), s(y)) -> DIV(-(x, y), s(y))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
lt(x, 0) -> false
lt(0, s(y)) -> true
lt(s(x), s(y)) -> lt(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
div(x, 0) -> 0
div(0, y) -> 0
div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y))))
DIV(s(x), s(y)) -> DIV(-(x, y), s(y))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
POL(0) = 0 POL(DIV(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1 POL(-(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Dependency Graph
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
lt(x, 0) -> false
lt(0, s(y)) -> true
lt(s(x), s(y)) -> lt(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
div(x, 0) -> 0
div(0, y) -> 0
div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y))))