Term Rewriting System R:
[x, y]
minus(minus(x)) -> x
minus(+(x, y)) -> *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) -> +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) -> minus(minus(minus(f(x))))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

MINUS(+(x, y)) -> MINUS(minus(minus(x)))
MINUS(+(x, y)) -> MINUS(minus(x))
MINUS(+(x, y)) -> MINUS(x)
MINUS(+(x, y)) -> MINUS(minus(minus(y)))
MINUS(+(x, y)) -> MINUS(minus(y))
MINUS(+(x, y)) -> MINUS(y)
MINUS(*(x, y)) -> MINUS(minus(minus(x)))
MINUS(*(x, y)) -> MINUS(minus(x))
MINUS(*(x, y)) -> MINUS(x)
MINUS(*(x, y)) -> MINUS(minus(minus(y)))
MINUS(*(x, y)) -> MINUS(minus(y))
MINUS(*(x, y)) -> MINUS(y)
F(minus(x)) -> MINUS(minus(minus(f(x))))
F(minus(x)) -> MINUS(minus(f(x)))
F(minus(x)) -> MINUS(f(x))
F(minus(x)) -> F(x)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pairs:

MINUS(*(x, y)) -> MINUS(y)
MINUS(*(x, y)) -> MINUS(minus(y))
MINUS(*(x, y)) -> MINUS(minus(minus(y)))
MINUS(*(x, y)) -> MINUS(x)
MINUS(*(x, y)) -> MINUS(minus(x))
MINUS(*(x, y)) -> MINUS(minus(minus(x)))
MINUS(+(x, y)) -> MINUS(y)
MINUS(+(x, y)) -> MINUS(minus(y))
MINUS(+(x, y)) -> MINUS(minus(minus(y)))
MINUS(+(x, y)) -> MINUS(x)
MINUS(+(x, y)) -> MINUS(minus(x))
MINUS(+(x, y)) -> MINUS(minus(minus(x)))


Rules:


minus(minus(x)) -> x
minus(+(x, y)) -> *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) -> +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) -> minus(minus(minus(f(x))))





The following dependency pairs can be strictly oriented:

MINUS(*(x, y)) -> MINUS(y)
MINUS(*(x, y)) -> MINUS(minus(y))
MINUS(*(x, y)) -> MINUS(minus(minus(y)))
MINUS(*(x, y)) -> MINUS(x)
MINUS(*(x, y)) -> MINUS(minus(x))
MINUS(*(x, y)) -> MINUS(minus(minus(x)))
MINUS(+(x, y)) -> MINUS(y)
MINUS(+(x, y)) -> MINUS(minus(y))
MINUS(+(x, y)) -> MINUS(minus(minus(y)))
MINUS(+(x, y)) -> MINUS(x)
MINUS(+(x, y)) -> MINUS(minus(x))
MINUS(+(x, y)) -> MINUS(minus(minus(x)))


The following usable rules w.r.t. to the AFS can be oriented:

minus(minus(x)) -> x
minus(+(x, y)) -> *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) -> +(minus(minus(minus(x))), minus(minus(minus(y))))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{+, *}

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1) -> MINUS(x1)
+(x1, x2) -> +(x1, x2)
minus(x1) -> x1
*(x1, x2) -> *(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


minus(minus(x)) -> x
minus(+(x, y)) -> *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) -> +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) -> minus(minus(minus(f(x))))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pair:

F(minus(x)) -> F(x)


Rules:


minus(minus(x)) -> x
minus(+(x, y)) -> *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) -> +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) -> minus(minus(minus(f(x))))





The following dependency pair can be strictly oriented:

F(minus(x)) -> F(x)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
minus(x1) -> minus(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


minus(minus(x)) -> x
minus(+(x, y)) -> *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) -> +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) -> minus(minus(minus(f(x))))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes