Term Rewriting System R:
[x, y, v, w, z]
sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

SORT(cons(x, y)) -> INSERT(x, sort(y))
SORT(cons(x, y)) -> SORT(y)
INSERT(x, cons(v, w)) -> CHOOSE(x, cons(v, w), x, v)
CHOOSE(x, cons(v, w), 0, s(z)) -> INSERT(x, w)
CHOOSE(x, cons(v, w), s(y), s(z)) -> CHOOSE(x, cons(v, w), y, z)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pairs:

CHOOSE(x, cons(v, w), s(y), s(z)) -> CHOOSE(x, cons(v, w), y, z)
CHOOSE(x, cons(v, w), 0, s(z)) -> INSERT(x, w)
INSERT(x, cons(v, w)) -> CHOOSE(x, cons(v, w), x, v)


Rules:


sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)





The following dependency pair can be strictly oriented:

CHOOSE(x, cons(v, w), 0, s(z)) -> INSERT(x, w)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
CHOOSE(x1, x2, x3, x4) -> x2
cons(x1, x2) -> cons(x1, x2)
INSERT(x1, x2) -> x2


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
AFS


Dependency Pairs:

CHOOSE(x, cons(v, w), s(y), s(z)) -> CHOOSE(x, cons(v, w), y, z)
INSERT(x, cons(v, w)) -> CHOOSE(x, cons(v, w), x, v)


Rules:


sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)





Using the Dependency Graph the DP problem was split into 1 DP problems.


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
DGraph
             ...
               →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pair:

CHOOSE(x, cons(v, w), s(y), s(z)) -> CHOOSE(x, cons(v, w), y, z)


Rules:


sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)





The following dependency pair can be strictly oriented:

CHOOSE(x, cons(v, w), s(y), s(z)) -> CHOOSE(x, cons(v, w), y, z)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(CHOOSE(x1, x2, x3, x4))=  x1 + x2 + x3 + x4  
  POL(cons(x1, x2))=  x1 + x2  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
CHOOSE(x1, x2, x3, x4) -> CHOOSE(x1, x2, x3, x4)
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
DGraph
             ...
               →DP Problem 5
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pair:

SORT(cons(x, y)) -> SORT(y)


Rules:


sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)





The following dependency pair can be strictly oriented:

SORT(cons(x, y)) -> SORT(y)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(SORT(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
SORT(x1) -> SORT(x1)
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes