R
↳Dependency Pair Analysis
SORT(cons(x, y)) -> INSERT(x, sort(y))
SORT(cons(x, y)) -> SORT(y)
INSERT(x, cons(v, w)) -> CHOOSE(x, cons(v, w), x, v)
CHOOSE(x, cons(v, w), 0, s(z)) -> INSERT(x, w)
CHOOSE(x, cons(v, w), s(y), s(z)) -> CHOOSE(x, cons(v, w), y, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
CHOOSE(x, cons(v, w), s(y), s(z)) -> CHOOSE(x, cons(v, w), y, z)
CHOOSE(x, cons(v, w), 0, s(z)) -> INSERT(x, w)
INSERT(x, cons(v, w)) -> CHOOSE(x, cons(v, w), x, v)
sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)
CHOOSE(x, cons(v, w), 0, s(z)) -> INSERT(x, w)
POL(CHOOSE(x1, x2, x3, x4)) = x2 POL(0) = 0 POL(cons(x1, x2)) = 1 + x2 POL(INSERT(x1, x2)) = x2 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
CHOOSE(x, cons(v, w), s(y), s(z)) -> CHOOSE(x, cons(v, w), y, z)
INSERT(x, cons(v, w)) -> CHOOSE(x, cons(v, w), x, v)
sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳DGraph
...
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Polo
CHOOSE(x, cons(v, w), s(y), s(z)) -> CHOOSE(x, cons(v, w), y, z)
sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)
one new Dependency Pair is created:
CHOOSE(x, cons(v, w), s(y), s(z)) -> CHOOSE(x, cons(v, w), y, z)
CHOOSE(x', cons(v', w'), s(s(y'')), s(s(z''))) -> CHOOSE(x', cons(v', w'), s(y''), s(z''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳DGraph
...
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Polo
CHOOSE(x', cons(v', w'), s(s(y'')), s(s(z''))) -> CHOOSE(x', cons(v', w'), s(y''), s(z''))
sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)
one new Dependency Pair is created:
CHOOSE(x', cons(v', w'), s(s(y'')), s(s(z''))) -> CHOOSE(x', cons(v', w'), s(y''), s(z''))
CHOOSE(x''', cons(v'', w''), s(s(s(y''''))), s(s(s(z'''')))) -> CHOOSE(x''', cons(v'', w''), s(s(y'''')), s(s(z'''')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳DGraph
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳Polo
CHOOSE(x''', cons(v'', w''), s(s(s(y''''))), s(s(s(z'''')))) -> CHOOSE(x''', cons(v'', w''), s(s(y'''')), s(s(z'''')))
sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)
CHOOSE(x''', cons(v'', w''), s(s(s(y''''))), s(s(s(z'''')))) -> CHOOSE(x''', cons(v'', w''), s(s(y'''')), s(s(z'''')))
POL(CHOOSE(x1, x2, x3, x4)) = 1 + x1 + x3 POL(cons(x1, x2)) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳DGraph
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Polo
sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
SORT(cons(x, y)) -> SORT(y)
sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)
SORT(cons(x, y)) -> SORT(y)
POL(cons(x1, x2)) = 1 + x2 POL(SORT(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 8
↳Dependency Graph
sort(nil) -> nil
sort(cons(x, y)) -> insert(x, sort(y))
insert(x, nil) -> cons(x, nil)
insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) -> cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) -> cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z)