Term Rewriting System R:
[x, y, z]
:(:(x, y), z) -> :(x, :(y, z))
:(+(x, y), z) -> +(:(x, z), :(y, z))
:(z, +(x, f(y))) -> :(g(z, y), +(x, a))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

:'(:(x, y), z) -> :'(x, :(y, z))
:'(:(x, y), z) -> :'(y, z)
:'(+(x, y), z) -> :'(x, z)
:'(+(x, y), z) -> :'(y, z)
:'(z, +(x, f(y))) -> :'(g(z, y), +(x, a))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

:'(+(x, y), z) -> :'(y, z)
:'(+(x, y), z) -> :'(x, z)
:'(:(x, y), z) -> :'(y, z)
:'(:(x, y), z) -> :'(x, :(y, z))


Rules:


:(:(x, y), z) -> :(x, :(y, z))
:(+(x, y), z) -> +(:(x, z), :(y, z))
:(z, +(x, f(y))) -> :(g(z, y), +(x, a))





The following dependency pairs can be strictly oriented:

:'(+(x, y), z) -> :'(y, z)
:'(+(x, y), z) -> :'(x, z)
:'(:(x, y), z) -> :'(y, z)
:'(:(x, y), z) -> :'(x, :(y, z))


The following usable rules w.r.t. to the AFS can be oriented:

:(:(x, y), z) -> :(x, :(y, z))
:(+(x, y), z) -> +(:(x, z), :(y, z))
:(z, +(x, f(y))) -> :(g(z, y), +(x, a))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{:, :'} > +
f > a

resulting in one new DP problem.
Used Argument Filtering System:
:'(x1, x2) -> :'(x1, x2)
:(x1, x2) -> :(x1, x2)
+(x1, x2) -> +(x1, x2)
f(x1) -> f(x1)
g(x1, x2) -> x1


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


:(:(x, y), z) -> :(x, :(y, z))
:(+(x, y), z) -> +(:(x, z), :(y, z))
:(z, +(x, f(y))) -> :(g(z, y), +(x, a))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes