Term Rewriting System R:
[x, y]
p(s(x)) -> x
fact(0) -> s(0)
fact(s(x)) -> *(s(x), fact(p(s(x))))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FACT(s(x)) -> *'(s(x), fact(p(s(x))))
FACT(s(x)) -> FACT(p(s(x)))
FACT(s(x)) -> P(s(x))
*'(s(x), y) -> +'(*(x, y), y)
*'(s(x), y) -> *'(x, y)
+'(x, s(y)) -> +'(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:

+'(x, s(y)) -> +'(x, y)


Rules:


p(s(x)) -> x
fact(0) -> s(0)
fact(s(x)) -> *(s(x), fact(p(s(x))))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





The following dependency pair can be strictly oriented:

+'(x, s(y)) -> +'(x, y)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  1 + x1  
  POL(+'(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


p(s(x)) -> x
fact(0) -> s(0)
fact(s(x)) -> *(s(x), fact(p(s(x))))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pair:

*'(s(x), y) -> *'(x, y)


Rules:


p(s(x)) -> x
fact(0) -> s(0)
fact(s(x)) -> *(s(x), fact(p(s(x))))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





The following dependency pair can be strictly oriented:

*'(s(x), y) -> *'(x, y)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(*'(x1, x2))=  x1 + x2  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


p(s(x)) -> x
fact(0) -> s(0)
fact(s(x)) -> *(s(x), fact(p(s(x))))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:
Dependency Pair:

FACT(s(x)) -> FACT(p(s(x)))


Rules:


p(s(x)) -> x
fact(0) -> s(0)
fact(s(x)) -> *(s(x), fact(p(s(x))))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))




Termination of R could not be shown.
Duration:
0:00 minutes