Term Rewriting System R:
[x, y, z]
*(x, +(y, z)) -> +(*(x, y), *(x, z))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)


Rule:


*(x, +(y, z)) -> +(*(x, y), *(x, z))





The following dependency pairs can be strictly oriented:

*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rule:


*(x, +(y, z)) -> +(*(x, y), *(x, z))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes