Term Rewriting System R:
[x, y, z]
*(x, +(y, z)) -> +(*(x, y), *(x, z))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`

Dependency Pairs:

*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)

Rule:

*(x, +(y, z)) -> +(*(x, y), *(x, z))

The following dependency pairs can be strictly oriented:

*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)

There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
+(x1, x2) -> +(x1, x2)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 2`
`             ↳Dependency Graph`

Dependency Pair:

Rule:

*(x, +(y, z)) -> +(*(x, y), *(x, z))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes