R
↳Dependency Pair Analysis
.'(.(x, y), z) -> .'(x, .(y, z))
.'(.(x, y), z) -> .'(y, z)
I(.(x, y)) -> .'(i(y), i(x))
I(.(x, y)) -> I(y)
I(.(x, y)) -> I(x)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
.'(.(x, y), z) -> .'(y, z)
.'(.(x, y), z) -> .'(x, .(y, z))
.(1, x) -> x
.(x, 1) -> x
.(i(x), x) -> 1
.(x, i(x)) -> 1
.(i(y), .(y, z)) -> z
.(y, .(i(y), z)) -> z
.(.(x, y), z) -> .(x, .(y, z))
i(1) -> 1
i(i(x)) -> x
i(.(x, y)) -> .(i(y), i(x))
.'(.(x, y), z) -> .'(y, z)
.'(.(x, y), z) -> .'(x, .(y, z))
.(1, x) -> x
.(x, 1) -> x
.(i(x), x) -> 1
.(x, i(x)) -> 1
.(i(y), .(y, z)) -> z
.(y, .(i(y), z)) -> z
.(.(x, y), z) -> .(x, .(y, z))
i(1) -> 1
i(i(x)) -> x
i(.(x, y)) -> .(i(y), i(x))
POL(i(x1)) = x1 POL(1) = 0 POL(.(x1, x2)) = 1 + x1 + x2 POL(.'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
.(1, x) -> x
.(x, 1) -> x
.(i(x), x) -> 1
.(x, i(x)) -> 1
.(i(y), .(y, z)) -> z
.(y, .(i(y), z)) -> z
.(.(x, y), z) -> .(x, .(y, z))
i(1) -> 1
i(i(x)) -> x
i(.(x, y)) -> .(i(y), i(x))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
I(.(x, y)) -> I(x)
I(.(x, y)) -> I(y)
.(1, x) -> x
.(x, 1) -> x
.(i(x), x) -> 1
.(x, i(x)) -> 1
.(i(y), .(y, z)) -> z
.(y, .(i(y), z)) -> z
.(.(x, y), z) -> .(x, .(y, z))
i(1) -> 1
i(i(x)) -> x
i(.(x, y)) -> .(i(y), i(x))
I(.(x, y)) -> I(x)
I(.(x, y)) -> I(y)
.(1, x) -> x
.(x, 1) -> x
.(i(x), x) -> 1
.(x, i(x)) -> 1
.(i(y), .(y, z)) -> z
.(y, .(i(y), z)) -> z
.(.(x, y), z) -> .(x, .(y, z))
i(1) -> 1
i(i(x)) -> x
i(.(x, y)) -> .(i(y), i(x))
POL(I(x1)) = x1 POL(i(x1)) = x1 POL(1) = 0 POL(.(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Dependency Graph
.(1, x) -> x
.(x, 1) -> x
.(i(x), x) -> 1
.(x, i(x)) -> 1
.(i(y), .(y, z)) -> z
.(y, .(i(y), z)) -> z
.(.(x, y), z) -> .(x, .(y, z))
i(1) -> 1
i(i(x)) -> x
i(.(x, y)) -> .(i(y), i(x))