Term Rewriting System R:
[x, y]
D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))
D(minus(x)) -> minus(D(x))
D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2)))
D(ln(x)) -> div(D(x), x)
D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y)))

Termination of R to be shown.

`   R`
`     ↳Overlay and local confluence Check`

The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

D'(+(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(-(x, y)) -> D'(y)
D'(minus(x)) -> D'(x)
D'(div(x, y)) -> D'(x)
D'(div(x, y)) -> D'(y)
D'(ln(x)) -> D'(x)
D'(pow(x, y)) -> D'(x)
D'(pow(x, y)) -> D'(y)

Furthermore, R contains one SCC.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳Usable Rules (Innermost)`

Dependency Pairs:

D'(pow(x, y)) -> D'(y)
D'(pow(x, y)) -> D'(x)
D'(ln(x)) -> D'(x)
D'(div(x, y)) -> D'(y)
D'(div(x, y)) -> D'(x)
D'(minus(x)) -> D'(x)
D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)

Rules:

D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))
D(minus(x)) -> minus(D(x))
D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2)))
D(ln(x)) -> div(D(x), x)
D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y)))

Strategy:

innermost

As we are in the innermost case, we can delete all 9 non-usable-rules.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`             ...`
`               →DP Problem 2`
`                 ↳Size-Change Principle`

Dependency Pairs:

D'(pow(x, y)) -> D'(y)
D'(pow(x, y)) -> D'(x)
D'(ln(x)) -> D'(x)
D'(div(x, y)) -> D'(y)
D'(div(x, y)) -> D'(x)
D'(minus(x)) -> D'(x)
D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. D'(pow(x, y)) -> D'(y)
2. D'(pow(x, y)) -> D'(x)
3. D'(ln(x)) -> D'(x)
4. D'(div(x, y)) -> D'(y)
5. D'(div(x, y)) -> D'(x)
6. D'(minus(x)) -> D'(x)
7. D'(-(x, y)) -> D'(y)
8. D'(-(x, y)) -> D'(x)
9. D'(*(x, y)) -> D'(y)
10. D'(*(x, y)) -> D'(x)
11. D'(+(x, y)) -> D'(y)
12. D'(+(x, y)) -> D'(x)
and get the following Size-Change Graph(s):
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} , {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
1>1

which lead(s) to this/these maximal multigraph(s):
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} , {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
pow(x1, x2) -> pow(x1, x2)
*(x1, x2) -> *(x1, x2)
minus(x1) -> minus(x1)
-(x1, x2) -> -(x1, x2)
+(x1, x2) -> +(x1, x2)
div(x1, x2) -> div(x1, x2)
ln(x1) -> ln(x1)

We obtain no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes