Term Rewriting System R:
[x, y]
D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))
D(minus(x)) -> minus(D(x))
D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2)))
D(ln(x)) -> div(D(x), x)
D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y)))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

D'(+(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(-(x, y)) -> D'(y)
D'(minus(x)) -> D'(x)
D'(div(x, y)) -> D'(x)
D'(div(x, y)) -> D'(y)
D'(ln(x)) -> D'(x)
D'(pow(x, y)) -> D'(x)
D'(pow(x, y)) -> D'(y)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
Dependency Pairs:

D'(pow(x, y)) -> D'(y)
D'(pow(x, y)) -> D'(x)
D'(ln(x)) -> D'(x)
D'(div(x, y)) -> D'(y)
D'(div(x, y)) -> D'(x)
D'(minus(x)) -> D'(x)
D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)

Rules:

D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))
D(minus(x)) -> minus(D(x))
D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2)))
D(ln(x)) -> div(D(x), x)
D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y)))

Termination of R could not be shown.
Duration:
0:03 minutes