Term Rewriting System R:
[x, y]
D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

D'(+(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(-(x, y)) -> D'(y)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)
D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)


Rules:


D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))





The following dependency pairs can be strictly oriented:

D'(+(x, y)) -> D'(y)
D'(+(x, y)) -> D'(x)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(D'(x1))=  x1  
  POL(*(x1, x2))=  x1 + x2  
  POL(-(x1, x2))=  x1 + x2  
  POL(+(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
D'(x1) -> D'(x1)
+(x1, x2) -> +(x1, x2)
*(x1, x2) -> *(x1, x2)
-(x1, x2) -> -(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Argument Filtering and Ordering


Dependency Pairs:

D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)
D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)


Rules:


D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))





The following dependency pairs can be strictly oriented:

D'(*(x, y)) -> D'(y)
D'(*(x, y)) -> D'(x)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(D'(x1))=  x1  
  POL(*(x1, x2))=  1 + x1 + x2  
  POL(-(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
D'(x1) -> D'(x1)
*(x1, x2) -> *(x1, x2)
-(x1, x2) -> -(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
AFS
             ...
               →DP Problem 3
Argument Filtering and Ordering


Dependency Pairs:

D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)


Rules:


D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))





The following dependency pairs can be strictly oriented:

D'(-(x, y)) -> D'(y)
D'(-(x, y)) -> D'(x)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(D'(x1))=  x1  
  POL(-(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
D'(x1) -> D'(x1)
-(x1, x2) -> -(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
AFS
             ...
               →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


D(t) -> 1
D(constant) -> 0
D(+(x, y)) -> +(D(x), D(y))
D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) -> -(D(x), D(y))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes