Term Rewriting System R:
[x]
w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

W(r(x)) -> W(x)
B(r(x)) -> B(x)
B(w(x)) -> W(b(x))
B(w(x)) -> B(x)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pair:

W(r(x)) -> W(x)


Rules:


w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))





The following dependency pair can be strictly oriented:

W(r(x)) -> W(x)


The following rules can be oriented:

w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{w, b} > r

resulting in one new DP problem.
Used Argument Filtering System:
W(x1) -> W(x1)
r(x1) -> r(x1)
w(x1) -> w(x1)
b(x1) -> b(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pairs:

B(w(x)) -> B(x)
B(r(x)) -> B(x)


Rules:


w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))





The following dependency pairs can be strictly oriented:

B(w(x)) -> B(x)
B(r(x)) -> B(x)


The following rules can be oriented:

w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{w, b} > r

resulting in one new DP problem.
Used Argument Filtering System:
B(x1) -> B(x1)
w(x1) -> w(x1)
r(x1) -> r(x1)
b(x1) -> b(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


w(r(x)) -> r(w(x))
b(r(x)) -> r(b(x))
b(w(x)) -> w(b(x))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes