Term Rewriting System R:
[x, y, z]
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> 0'(+(+(x, y), 1(#)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
-'(0(x), 0(y)) -> 0'(-(x, y))
-'(0(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(1(x), 1(y)) -> 0'(-(x, y))
-'(1(x), 1(y)) -> -'(x, y)
GE(0(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> NOT(ge(y, x))
GE(0(x), 1(y)) -> GE(y, x)
GE(1(x), 0(y)) -> GE(x, y)
GE(1(x), 1(y)) -> GE(x, y)
GE(#, 0(x)) -> GE(#, x)
MIN(n(x, y, z)) -> MIN(y)
MAX(n(x, y, z)) -> MAX(z)
BS(n(x, y, z)) -> AND(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
BS(n(x, y, z)) -> AND(ge(x, max(y)), ge(min(z), x))
BS(n(x, y, z)) -> GE(x, max(y))
BS(n(x, y, z)) -> MAX(y)
BS(n(x, y, z)) -> GE(min(z), x)
BS(n(x, y, z)) -> MIN(z)
BS(n(x, y, z)) -> AND(bs(y), bs(z))
BS(n(x, y, z)) -> BS(y)
BS(n(x, y, z)) -> BS(z)
SIZE(n(x, y, z)) -> +'(+(size(x), size(y)), 1(#))
SIZE(n(x, y, z)) -> +'(size(x), size(y))
SIZE(n(x, y, z)) -> SIZE(x)
SIZE(n(x, y, z)) -> SIZE(y)
WB(n(x, y, z)) -> AND(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
WB(n(x, y, z)) -> IF(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y))))
WB(n(x, y, z)) -> GE(size(y), size(z))
WB(n(x, y, z)) -> SIZE(y)
WB(n(x, y, z)) -> SIZE(z)
WB(n(x, y, z)) -> GE(1(#), -(size(y), size(z)))
WB(n(x, y, z)) -> -'(size(y), size(z))
WB(n(x, y, z)) -> GE(1(#), -(size(z), size(y)))
WB(n(x, y, z)) -> -'(size(z), size(y))
WB(n(x, y, z)) -> AND(wb(y), wb(z))
WB(n(x, y, z)) -> WB(y)
WB(n(x, y, z)) -> WB(z)
Furthermore, R contains nine SCCs.
R
↳DPs
→DP Problem 1
↳Modular Removal of Rules
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pairs:
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
We have the following set of usable rules:
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(#) | = 0 |
POL(0(x1)) | = x1 |
POL(1(x1)) | = x1 |
POL(+(x1, x2)) | = x1 + x2 |
POL(+'(x1, x2)) | = 1 + x1 + x2 |
We have the following set D of usable symbols: {#, 0, 1, +, +'}
No Dependency Pairs can be deleted.
31 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 10
↳Modular Removal of Rules
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pairs:
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
Rules:
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
We have the following set of usable rules:
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(#) | = 0 |
POL(0(x1)) | = x1 |
POL(1(x1)) | = 1 + x1 |
POL(+(x1, x2)) | = x1 + x2 |
POL(+'(x1, x2)) | = 1 + x1 + x2 |
We have the following set D of usable symbols: {#, 0, 1, +, +'}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 10
↳MRR
...
→DP Problem 11
↳Modular Removal of Rules
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pairs:
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(0(x), 0(y)) -> +'(x, y)
Rules:
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
We have the following set of usable rules:
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(#) | = 0 |
POL(0(x1)) | = 1 + x1 |
POL(1(x1)) | = x1 |
POL(+(x1, x2)) | = x1 + x2 |
POL(+'(x1, x2)) | = x1 + x2 |
We have the following set D of usable symbols: {#, 0, 1, +, +'}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
+'(0(x), 0(y)) -> +'(x, y)
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
0(#) -> #
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 10
↳MRR
...
→DP Problem 12
↳Modular Removal of Rules
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pairs:
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
Rules:
+(x, #) -> x
+(#, x) -> x
+(x, +(y, z)) -> +(+(x, y), z)
We have the following set of usable rules:
+(x, #) -> x
+(#, x) -> x
+(x, +(y, z)) -> +(+(x, y), z)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(#) | = 0 |
POL(+(x1, x2)) | = x1 + x2 |
POL(+'(x1, x2)) | = 1 + x1 + x2 |
We have the following set D of usable symbols: {+, +'}
No Dependency Pairs can be deleted.
The following rules can be deleted as they contain symbols in their lhs which do not occur in D:
+(x, #) -> x
+(#, x) -> x
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 10
↳MRR
...
→DP Problem 13
↳Modular Removal of Rules
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pairs:
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
Rule:
+(x, +(y, z)) -> +(+(x, y), z)
We have the following set of usable rules:
+(x, +(y, z)) -> +(+(x, y), z)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(+(x1, x2)) | = 1 + x1 + x2 |
POL(+'(x1, x2)) | = 1 + x1 + x2 |
We have the following set D of usable symbols: {+, +'}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
+'(x, +(y, z)) -> +'(x, y)
No Rules can be deleted.
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 10
↳MRR
...
→DP Problem 14
↳Size-Change Principle
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pair:
+'(x, +(y, z)) -> +'(+(x, y), z)
Rule:
+(x, +(y, z)) -> +(+(x, y), z)
We number the DPs as follows:
- +'(x, +(y, z)) -> +'(+(x, y), z)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Modular Removal of Rules
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pairs:
-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
We have the following set of usable rules:
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(#) | = 0 |
POL(-'(x1, x2)) | = 1 + x1 + x2 |
POL(0(x1)) | = x1 |
POL(1(x1)) | = x1 |
POL(-(x1, x2)) | = x1 + x2 |
We have the following set D of usable symbols: {#, -', 0, 1, -}
No Dependency Pairs can be deleted.
32 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 15
↳Modular Removal of Rules
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pairs:
-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)
Rules:
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
0(#) -> #
We have the following set of usable rules:
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(#) | = 0 |
POL(-'(x1, x2)) | = 1 + x1 + x2 |
POL(0(x1)) | = 1 + x1 |
POL(1(x1)) | = 1 + x1 |
POL(-(x1, x2)) | = x1 + x2 |
We have the following set D of usable symbols: {#, -', 0, 1, -}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)
No Rules can be deleted.
After the removal, there are no SCCs in the dependency graph which results in no DP problems which have to be solved.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pair:
GE(#, 0(x)) -> GE(#, x)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
We number the DPs as follows:
- GE(#, 0(x)) -> GE(#, x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
0(x1) -> 0(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pair:
MIN(n(x, y, z)) -> MIN(y)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
We number the DPs as follows:
- MIN(n(x, y, z)) -> MIN(y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
n(x1, x2, x3) -> n(x1, x2, x3)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Size-Change Principle
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pair:
MAX(n(x, y, z)) -> MAX(z)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
We number the DPs as follows:
- MAX(n(x, y, z)) -> MAX(z)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
n(x1, x2, x3) -> n(x1, x2, x3)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳Size-Change Principle
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pairs:
SIZE(n(x, y, z)) -> SIZE(y)
SIZE(n(x, y, z)) -> SIZE(x)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
We number the DPs as follows:
- SIZE(n(x, y, z)) -> SIZE(y)
- SIZE(n(x, y, z)) -> SIZE(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
n(x1, x2, x3) -> n(x1, x2, x3)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳Size-Change Principle
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
Dependency Pairs:
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
We number the DPs as follows:
- GE(1(x), 1(y)) -> GE(x, y)
- GE(1(x), 0(y)) -> GE(x, y)
- GE(0(x), 1(y)) -> GE(y, x)
- GE(0(x), 0(y)) -> GE(x, y)
and get the following Size-Change Graph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 2 |
2 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
0(x1) -> 0(x1)
1(x1) -> 1(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Size-Change Principle
→DP Problem 9
↳SCP
Dependency Pairs:
WB(n(x, y, z)) -> WB(z)
WB(n(x, y, z)) -> WB(y)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
We number the DPs as follows:
- WB(n(x, y, z)) -> WB(z)
- WB(n(x, y, z)) -> WB(y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
n(x1, x2, x3) -> n(x1, x2, x3)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳Size-Change Principle
Dependency Pairs:
BS(n(x, y, z)) -> BS(z)
BS(n(x, y, z)) -> BS(y)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
We number the DPs as follows:
- BS(n(x, y, z)) -> BS(z)
- BS(n(x, y, z)) -> BS(y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
n(x1, x2, x3) -> n(x1, x2, x3)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:04 minutes