Term Rewriting System R:
[x, y, z]
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> 0'(+(+(x, y), 1(#)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
-'(0(x), 0(y)) -> 0'(-(x, y))
-'(0(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(1(x), 1(y)) -> 0'(-(x, y))
-'(1(x), 1(y)) -> -'(x, y)
GE(0(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> NOT(ge(y, x))
GE(0(x), 1(y)) -> GE(y, x)
GE(1(x), 0(y)) -> GE(x, y)
GE(1(x), 1(y)) -> GE(x, y)
GE(#, 0(x)) -> GE(#, x)
MIN(n(x, y, z)) -> MIN(y)
MAX(n(x, y, z)) -> MAX(z)
BS(n(x, y, z)) -> AND(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
BS(n(x, y, z)) -> AND(ge(x, max(y)), ge(min(z), x))
BS(n(x, y, z)) -> GE(x, max(y))
BS(n(x, y, z)) -> MAX(y)
BS(n(x, y, z)) -> GE(min(z), x)
BS(n(x, y, z)) -> MIN(z)
BS(n(x, y, z)) -> AND(bs(y), bs(z))
BS(n(x, y, z)) -> BS(y)
BS(n(x, y, z)) -> BS(z)
SIZE(n(x, y, z)) -> +'(+(size(x), size(y)), 1(#))
SIZE(n(x, y, z)) -> +'(size(x), size(y))
SIZE(n(x, y, z)) -> SIZE(x)
SIZE(n(x, y, z)) -> SIZE(y)
WB(n(x, y, z)) -> AND(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
WB(n(x, y, z)) -> IF(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y))))
WB(n(x, y, z)) -> GE(size(y), size(z))
WB(n(x, y, z)) -> SIZE(y)
WB(n(x, y, z)) -> SIZE(z)
WB(n(x, y, z)) -> GE(1(#), -(size(y), size(z)))
WB(n(x, y, z)) -> -'(size(y), size(z))
WB(n(x, y, z)) -> GE(1(#), -(size(z), size(y)))
WB(n(x, y, z)) -> -'(size(z), size(y))
WB(n(x, y, z)) -> AND(wb(y), wb(z))
WB(n(x, y, z)) -> WB(y)
WB(n(x, y, z)) -> WB(z)

Furthermore, R contains nine SCCs.


   R
DPs
       →DP Problem 1
Modular Removal of Rules
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))





We have the following set of usable rules:

+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(#)=  0  
  POL(0(x1))=  x1  
  POL(1(x1))=  x1  
  POL(+(x1, x2))=  x1 + x2  
  POL(+'(x1, x2))=  1 + x1 + x2  

We have the following set D of usable symbols: {#, 0, 1, +, +'}
No Dependency Pairs can be deleted.
31 non usable rules have been deleted.

The result of this processor delivers one new DP problem.



   R
DPs
       →DP Problem 1
MRR
           →DP Problem 10
Modular Removal of Rules
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)


Rules:


+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #





We have the following set of usable rules:

+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(#)=  0  
  POL(0(x1))=  x1  
  POL(1(x1))=  1 + x1  
  POL(+(x1, x2))=  x1 + x2  
  POL(+'(x1, x2))=  1 + x1 + x2  

We have the following set D of usable symbols: {#, 0, 1, +, +'}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:

+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)

The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:

+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))


The result of this processor delivers one new DP problem.



   R
DPs
       →DP Problem 1
MRR
           →DP Problem 10
MRR
             ...
               →DP Problem 11
Modular Removal of Rules
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(0(x), 0(y)) -> +'(x, y)


Rules:


+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #





We have the following set of usable rules:

+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(#)=  0  
  POL(0(x1))=  1 + x1  
  POL(1(x1))=  x1  
  POL(+(x1, x2))=  x1 + x2  
  POL(+'(x1, x2))=  x1 + x2  

We have the following set D of usable symbols: {#, 0, 1, +, +'}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:

+'(0(x), 0(y)) -> +'(x, y)

The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:

+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
0(#) -> #


The result of this processor delivers one new DP problem.



   R
DPs
       →DP Problem 1
MRR
           →DP Problem 10
MRR
             ...
               →DP Problem 12
Modular Removal of Rules
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)


Rules:


+(x, #) -> x
+(#, x) -> x
+(x, +(y, z)) -> +(+(x, y), z)





We have the following set of usable rules:

+(x, #) -> x
+(#, x) -> x
+(x, +(y, z)) -> +(+(x, y), z)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(#)=  0  
  POL(+(x1, x2))=  x1 + x2  
  POL(+'(x1, x2))=  1 + x1 + x2  

We have the following set D of usable symbols: {+, +'}
No Dependency Pairs can be deleted.
The following rules can be deleted as they contain symbols in their lhs which do not occur in D:

+(x, #) -> x
+(#, x) -> x


The result of this processor delivers one new DP problem.



   R
DPs
       →DP Problem 1
MRR
           →DP Problem 10
MRR
             ...
               →DP Problem 13
Modular Removal of Rules
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)


Rule:


+(x, +(y, z)) -> +(+(x, y), z)





We have the following set of usable rules:

+(x, +(y, z)) -> +(+(x, y), z)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(+(x1, x2))=  1 + x1 + x2  
  POL(+'(x1, x2))=  1 + x1 + x2  

We have the following set D of usable symbols: {+, +'}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:

+'(x, +(y, z)) -> +'(x, y)

No Rules can be deleted.

The result of this processor delivers one new DP problem.



   R
DPs
       →DP Problem 1
MRR
           →DP Problem 10
MRR
             ...
               →DP Problem 14
Size-Change Principle
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pair:

+'(x, +(y, z)) -> +'(+(x, y), z)


Rule:


+(x, +(y, z)) -> +(+(x, y), z)





We number the DPs as follows:
  1. +'(x, +(y, z)) -> +'(+(x, y), z)
and get the following Size-Change Graph(s):
{1} , {1}
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial


We obtain no new DP problems.


   R
DPs
       →DP Problem 1
MRR
       →DP Problem 2
Modular Removal of Rules
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pairs:

-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))





We have the following set of usable rules:

-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(#)=  0  
  POL(-'(x1, x2))=  1 + x1 + x2  
  POL(0(x1))=  x1  
  POL(1(x1))=  x1  
  POL(-(x1, x2))=  x1 + x2  

We have the following set D of usable symbols: {#, -', 0, 1, -}
No Dependency Pairs can be deleted.
32 non usable rules have been deleted.

The result of this processor delivers one new DP problem.



   R
DPs
       →DP Problem 1
MRR
       →DP Problem 2
MRR
           →DP Problem 15
Modular Removal of Rules
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pairs:

-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)


Rules:


-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
0(#) -> #





We have the following set of usable rules:

-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(#)=  0  
  POL(-'(x1, x2))=  1 + x1 + x2  
  POL(0(x1))=  1 + x1  
  POL(1(x1))=  1 + x1  
  POL(-(x1, x2))=  x1 + x2  

We have the following set D of usable symbols: {#, -', 0, 1, -}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:

-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)

No Rules can be deleted.

After the removal, there are no SCCs in the dependency graph which results in no DP problems which have to be solved.



   R
DPs
       →DP Problem 1
MRR
       →DP Problem 2
MRR
       →DP Problem 3
Size-Change Principle
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pair:

GE(#, 0(x)) -> GE(#, x)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))





We number the DPs as follows:
  1. GE(#, 0(x)) -> GE(#, x)
and get the following Size-Change Graph(s):
{1} , {1}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
0(x1) -> 0(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
MRR
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
Size-Change Principle
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pair:

MIN(n(x, y, z)) -> MIN(y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))





We number the DPs as follows:
  1. MIN(n(x, y, z)) -> MIN(y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
n(x1, x2, x3) -> n(x1, x2, x3)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
MRR
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
Size-Change Principle
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pair:

MAX(n(x, y, z)) -> MAX(z)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))





We number the DPs as follows:
  1. MAX(n(x, y, z)) -> MAX(z)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
n(x1, x2, x3) -> n(x1, x2, x3)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
MRR
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
Size-Change Principle
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pairs:

SIZE(n(x, y, z)) -> SIZE(y)
SIZE(n(x, y, z)) -> SIZE(x)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))





We number the DPs as follows:
  1. SIZE(n(x, y, z)) -> SIZE(y)
  2. SIZE(n(x, y, z)) -> SIZE(x)
and get the following Size-Change Graph(s):
{2, 1} , {2, 1}
1>1

which lead(s) to this/these maximal multigraph(s):
{2, 1} , {2, 1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
n(x1, x2, x3) -> n(x1, x2, x3)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
MRR
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
Size-Change Principle
       →DP Problem 8
SCP
       →DP Problem 9
SCP


Dependency Pairs:

GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))





We number the DPs as follows:
  1. GE(1(x), 1(y)) -> GE(x, y)
  2. GE(1(x), 0(y)) -> GE(x, y)
  3. GE(0(x), 1(y)) -> GE(y, x)
  4. GE(0(x), 0(y)) -> GE(x, y)
and get the following Size-Change Graph(s):
{4, 3, 2, 1} , {4, 3, 2, 1}
1>1
2>2
{4, 3, 2, 1} , {4, 3, 2, 1}
1>2
2>1

which lead(s) to this/these maximal multigraph(s):
{4, 3, 2, 1} , {4, 3, 2, 1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
0(x1) -> 0(x1)
1(x1) -> 1(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
MRR
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
Size-Change Principle
       →DP Problem 9
SCP


Dependency Pairs:

WB(n(x, y, z)) -> WB(z)
WB(n(x, y, z)) -> WB(y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))





We number the DPs as follows:
  1. WB(n(x, y, z)) -> WB(z)
  2. WB(n(x, y, z)) -> WB(y)
and get the following Size-Change Graph(s):
{2, 1} , {2, 1}
1>1

which lead(s) to this/these maximal multigraph(s):
{2, 1} , {2, 1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
n(x1, x2, x3) -> n(x1, x2, x3)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
MRR
       →DP Problem 2
MRR
       →DP Problem 3
SCP
       →DP Problem 4
SCP
       →DP Problem 5
SCP
       →DP Problem 6
SCP
       →DP Problem 7
SCP
       →DP Problem 8
SCP
       →DP Problem 9
Size-Change Principle


Dependency Pairs:

BS(n(x, y, z)) -> BS(z)
BS(n(x, y, z)) -> BS(y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))





We number the DPs as follows:
  1. BS(n(x, y, z)) -> BS(z)
  2. BS(n(x, y, z)) -> BS(y)
and get the following Size-Change Graph(s):
{2, 1} , {2, 1}
1>1

which lead(s) to this/these maximal multigraph(s):
{2, 1} , {2, 1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
n(x1, x2, x3) -> n(x1, x2, x3)

We obtain no new DP problems.

Termination of R successfully shown.
Duration:
0:04 minutes