R
↳Dependency Pair Analysis
+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> 0'(+(+(x, y), 1(#)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
-'(0(x), 0(y)) -> 0'(-(x, y))
-'(0(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(1(x), 1(y)) -> 0'(-(x, y))
-'(1(x), 1(y)) -> -'(x, y)
GE(0(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> NOT(ge(y, x))
GE(0(x), 1(y)) -> GE(y, x)
GE(1(x), 0(y)) -> GE(x, y)
GE(1(x), 1(y)) -> GE(x, y)
GE(#, 0(x)) -> GE(#, x)
MIN(n(x, y, z)) -> MIN(y)
MAX(n(x, y, z)) -> MAX(z)
BS(n(x, y, z)) -> AND(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
BS(n(x, y, z)) -> AND(ge(x, max(y)), ge(min(z), x))
BS(n(x, y, z)) -> GE(x, max(y))
BS(n(x, y, z)) -> MAX(y)
BS(n(x, y, z)) -> GE(min(z), x)
BS(n(x, y, z)) -> MIN(z)
BS(n(x, y, z)) -> AND(bs(y), bs(z))
BS(n(x, y, z)) -> BS(y)
BS(n(x, y, z)) -> BS(z)
SIZE(n(x, y, z)) -> +'(+(size(x), size(y)), 1(#))
SIZE(n(x, y, z)) -> +'(size(x), size(y))
SIZE(n(x, y, z)) -> SIZE(x)
SIZE(n(x, y, z)) -> SIZE(y)
WB(n(x, y, z)) -> AND(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
WB(n(x, y, z)) -> IF(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y))))
WB(n(x, y, z)) -> GE(size(y), size(z))
WB(n(x, y, z)) -> SIZE(y)
WB(n(x, y, z)) -> SIZE(z)
WB(n(x, y, z)) -> GE(1(#), -(size(y), size(z)))
WB(n(x, y, z)) -> -'(size(y), size(z))
WB(n(x, y, z)) -> GE(1(#), -(size(z), size(y)))
WB(n(x, y, z)) -> -'(size(z), size(y))
WB(n(x, y, z)) -> AND(wb(y), wb(z))
WB(n(x, y, z)) -> WB(y)
WB(n(x, y, z)) -> WB(z)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
+'(x, +(y, z)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
POL(#) = 0 POL(0(x1)) = x1 POL(1(x1)) = 1 + x1 POL(+(x1, x2)) = 1 + x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> +(x1, x2)
1(x1) -> 1(x1)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 10
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 10
↳DGraph
...
→DP Problem 11
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
POL(#) = 0 POL(0(x1)) = x1 POL(1(x1)) = 1 + x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
+'(x1, x2) -> +'(x1, x2)
1(x1) -> 1(x1)
+(x1, x2) -> +(x1, x2)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 10
↳DGraph
...
→DP Problem 13
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 10
↳DGraph
...
→DP Problem 12
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
+'(0(x), 0(y)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
+'(0(x), 0(y)) -> +'(x, y)
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
0(#) -> #
POL(#) = 0 POL(0(x1)) = 1 + x1 POL(1(x1)) = 1 + x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> +(x1, x2)
0(x1) -> 0(x1)
1(x1) -> 1(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 10
↳DGraph
...
→DP Problem 14
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
+'(x, +(y, z)) -> +'(+(x, y), z)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
+'(x, +(y, z)) -> +'(+(x, y), z)
POL(+(x1, x2)) = 1 + x1 + x2
+'(x1, x2) -> x2
+(x1, x2) -> +(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 10
↳DGraph
...
→DP Problem 15
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
0(#) -> #
POL(#) = 0 POL(-'(x1, x2)) = 1 + x1 + x2 POL(0(x1)) = 1 + x1 POL(1(x1)) = 1 + x1 POL(-(x1, x2)) = x1 + x2
-'(x1, x2) -> -'(x1, x2)
0(x1) -> 0(x1)
1(x1) -> 1(x1)
-(x1, x2) -> -(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 16
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
GE(#, 0(x)) -> GE(#, x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
GE(#, 0(x)) -> GE(#, x)
POL(#) = 0 POL(0(x1)) = 1 + x1 POL(GE(x1, x2)) = x1 + x2
GE(x1, x2) -> GE(x1, x2)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 17
↳Dependency Graph
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
MIN(n(x, y, z)) -> MIN(y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
MIN(n(x, y, z)) -> MIN(y)
POL(MIN(x1)) = x1 POL(n(x1, x2, x3)) = 1 + x1 + x2 + x3
MIN(x1) -> MIN(x1)
n(x1, x2, x3) -> n(x1, x2, x3)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 18
↳Dependency Graph
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
MAX(n(x, y, z)) -> MAX(z)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
MAX(n(x, y, z)) -> MAX(z)
POL(MAX(x1)) = x1 POL(n(x1, x2, x3)) = 1 + x1 + x2 + x3
MAX(x1) -> MAX(x1)
n(x1, x2, x3) -> n(x1, x2, x3)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 19
↳Dependency Graph
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
SIZE(n(x, y, z)) -> SIZE(y)
SIZE(n(x, y, z)) -> SIZE(x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
SIZE(n(x, y, z)) -> SIZE(y)
SIZE(n(x, y, z)) -> SIZE(x)
POL(n(x1, x2, x3)) = 1 + x1 + x2 + x3 POL(SIZE(x1)) = x1
SIZE(x1) -> SIZE(x1)
n(x1, x2, x3) -> n(x1, x2, x3)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 20
↳Dependency Graph
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Argument Filtering and Ordering
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
POL(0(x1)) = x1 POL(GE(x1, x2)) = 1 + x1 + x2 POL(1(x1)) = 1 + x1
GE(x1, x2) -> GE(x1, x2)
1(x1) -> 1(x1)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 21
↳Argument Filtering and Ordering
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
GE(0(x), 0(y)) -> GE(x, y)
POL(0(x1)) = 1 + x1 POL(GE(x1, x2)) = x1 + x2
GE(x1, x2) -> GE(x1, x2)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 21
↳AFS
...
→DP Problem 22
↳Dependency Graph
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 9
↳AFS
WB(n(x, y, z)) -> WB(z)
WB(n(x, y, z)) -> WB(y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
WB(n(x, y, z)) -> WB(z)
WB(n(x, y, z)) -> WB(y)
POL(n(x1, x2, x3)) = 1 + x1 + x2 + x3 POL(WB(x1)) = x1
WB(x1) -> WB(x1)
n(x1, x2, x3) -> n(x1, x2, x3)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 23
↳Dependency Graph
→DP Problem 9
↳AFS
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳Argument Filtering and Ordering
BS(n(x, y, z)) -> BS(z)
BS(n(x, y, z)) -> BS(y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
BS(n(x, y, z)) -> BS(z)
BS(n(x, y, z)) -> BS(y)
POL(BS(x1)) = x1 POL(n(x1, x2, x3)) = 1 + x1 + x2 + x3
BS(x1) -> BS(x1)
n(x1, x2, x3) -> n(x1, x2, x3)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 24
↳Dependency Graph
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, #) -> x
-(#, x) -> #
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(false) -> true
not(true) -> false
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 1(x)) -> false
ge(#, 0(x)) -> ge(#, x)
val(l(x)) -> x
val(n(x, y, z)) -> x
min(l(x)) -> x
min(n(x, y, z)) -> min(y)
max(l(x)) -> x
max(n(x, y, z)) -> max(z)
bs(l(x)) -> true
bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) -> 1(#)
size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#))
wb(l(x)) -> true
wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))