R
↳Dependency Pair Analysis
+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), j(y)) -> +'(x, y)
+'(j(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(+(x, y), j(#))
+'(j(x), j(y)) -> +'(x, y)
+'(1(x), j(y)) -> 0'(+(x, y))
+'(1(x), j(y)) -> +'(x, y)
+'(j(x), 1(y)) -> 0'(+(x, y))
+'(j(x), 1(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
OPP(0(x)) -> 0'(opp(x))
OPP(0(x)) -> OPP(x)
OPP(1(x)) -> OPP(x)
OPP(j(x)) -> OPP(x)
-'(x, y) -> +'(x, opp(y))
-'(x, y) -> OPP(y)
*'(0(x), y) -> 0'(*(x, y))
*'(0(x), y) -> *'(x, y)
*'(1(x), y) -> +'(0(*(x, y)), y)
*'(1(x), y) -> 0'(*(x, y))
*'(1(x), y) -> *'(x, y)
*'(j(x), y) -> -'(0(*(x, y)), y)
*'(j(x), y) -> 0'(*(x, y))
*'(j(x), y) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y), z) -> *'(y, z)
*'(+(x, y), z) -> +'(*(x, z), *(y, z))
*'(+(x, y), z) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(j(x), 1(y)) -> +'(x, y)
+'(1(x), j(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(+(x, y), j(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(j(x), 0(y)) -> +'(x, y)
+'(0(x), j(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
+'(j(x), 1(y)) -> +'(x, y)
+'(1(x), j(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(x, y)
+'(j(x), j(y)) -> +'(+(x, y), j(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(j(x), 0(y)) -> +'(x, y)
+'(0(x), j(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
0(#) -> #
POL(#) = 0 POL(0(x1)) = x1 POL(1(x1)) = 1 + x1 POL(j(x1)) = 1 + x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
POL(#) = 0 POL(0(x1)) = x1 POL(1(x1)) = 0 POL(j(x1)) = 0 POL(+(x1, x2)) = 1 + x1 + x2 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Polo
...
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
+'(0(x), 0(y)) -> +'(x, y)
POL(0(x1)) = 1 + x1 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Polo
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
OPP(j(x)) -> OPP(x)
OPP(1(x)) -> OPP(x)
OPP(0(x)) -> OPP(x)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
OPP(j(x)) -> OPP(x)
POL(0(x1)) = x1 POL(1(x1)) = x1 POL(OPP(x1)) = x1 POL(j(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Polynomial Ordering
→DP Problem 3
↳Polo
OPP(1(x)) -> OPP(x)
OPP(0(x)) -> OPP(x)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
OPP(1(x)) -> OPP(x)
POL(0(x1)) = x1 POL(1(x1)) = 1 + x1 POL(OPP(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Polo
...
→DP Problem 8
↳Polynomial Ordering
→DP Problem 3
↳Polo
OPP(0(x)) -> OPP(x)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
OPP(0(x)) -> OPP(x)
POL(0(x1)) = 1 + x1 POL(OPP(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Polo
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Polo
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
*'(+(x, y), z) -> *'(y, z)
*'(+(x, y), z) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(j(x), y) -> *'(x, y)
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*'(+(x, y), z) -> *'(y, z)
*'(+(x, y), z) -> *'(x, z)
POL(#) = 0 POL(opp(x1)) = 0 POL(0(x1)) = x1 POL(*'(x1, x2)) = x1 POL(1(x1)) = x1 POL(*(x1, x2)) = x1 + x2 POL(j(x1)) = x1 POL(-(x1, x2)) = 0 POL(+(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Polynomial Ordering
*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(y, z)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(j(x), y) -> *'(x, y)
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*'(*(x, y), z) -> *'(y, z)
*'(*(x, y), z) -> *'(x, *(y, z))
POL(#) = 0 POL(opp(x1)) = 0 POL(0(x1)) = x1 POL(*'(x1, x2)) = x1 POL(1(x1)) = x1 POL(*(x1, x2)) = 1 + x1 + x2 POL(j(x1)) = x1 POL(-(x1, x2)) = 0 POL(+(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Polo
...
→DP Problem 11
↳Polynomial Ordering
*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
*'(j(x), y) -> *'(x, y)
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
POL(0(x1)) = 0 POL(*'(x1, x2)) = x2 POL(1(x1)) = 0 POL(j(x1)) = 0 POL(+(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Polo
...
→DP Problem 12
↳Polynomial Ordering
*'(j(x), y) -> *'(x, y)
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*'(j(x), y) -> *'(x, y)
POL(0(x1)) = x1 POL(*'(x1, x2)) = x1 POL(1(x1)) = x1 POL(j(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Polo
...
→DP Problem 13
↳Polynomial Ordering
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*'(1(x), y) -> *'(x, y)
POL(0(x1)) = x1 POL(*'(x1, x2)) = x1 POL(1(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Polo
...
→DP Problem 14
↳Polynomial Ordering
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*'(0(x), y) -> *'(x, y)
POL(0(x1)) = 1 + x1 POL(*'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Polo
...
→DP Problem 15
↳Dependency Graph
0(#) -> #
+(#, x) -> x
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(0(x), j(y)) -> j(+(x, y))
+(j(x), 0(y)) -> j(+(x, y))
+(1(x), 1(y)) -> j(+(+(x, y), 1(#)))
+(j(x), j(y)) -> 1(+(+(x, y), j(#)))
+(1(x), j(y)) -> 0(+(x, y))
+(j(x), 1(y)) -> 0(+(x, y))
+(+(x, y), z) -> +(x, +(y, z))
opp(#) -> #
opp(0(x)) -> 0(opp(x))
opp(1(x)) -> j(opp(x))
opp(j(x)) -> 1(opp(x))
-(x, y) -> +(x, opp(y))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(j(x), y) -> -(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))