Term Rewriting System R:
[m, xi, n, s, x, y, k, t, psi, u]
Termsub(Case(m, xi, n), s) -> Frozen(m, Sumsub(xi, s), n, s)
Termsub(Termapp(m, n), s) -> Termapp(Termsub(m, s), Termsub(n, s))
Termsub(Termpair(m, n), s) -> Termpair(Termsub(m, s), Termsub(n, s))
Termsub(Terminl(m), s) -> Terminl(Termsub(m, s))
Termsub(Terminr(m), s) -> Terminr(Termsub(m, s))
Termsub(Termvar(x), Id) -> Termvar(x)
Termsub(Termvar(x), Consusual(y, m, s)) -> m
Termsub(Termvar(x), Consusual(y, m, s)) -> Termsub(Termvar(x), s)
Termsub(Termvar(x), Conssum(xi, k, s)) -> Termsub(Termvar(x), s)
Termsub(Termsub(m, s), t) -> Termsub(m, Concat(s, t))
Frozen(m, Sumconstant(Left), n, s) -> Termsub(m, s)
Frozen(m, Sumconstant(Right), n, s) -> Termsub(n, s)
Frozen(m, Sumtermvar(xi), n, s) -> Case(Termsub(m, s), xi, Termsub(n, s))
Sumsub(xi, Id) -> Sumtermvar(xi)
Sumsub(xi, Conssum(psi, k, s)) -> Sumconstant(k)
Sumsub(xi, Conssum(psi, k, s)) -> Sumsub(xi, s)
Sumsub(xi, Consusual(y, m, s)) -> Sumsub(xi, s)
Concat(Concat(s, t), u) -> Concat(s, Concat(t, u))
Concat(Consusual(x, m, s), t) -> Consusual(x, Termsub(m, t), Concat(s, t))
Concat(Conssum(xi, k, s), t) -> Conssum(xi, k, Concat(s, t))
Concat(Id, s) -> s

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

TERMSUB(Case(m, xi, n), s) -> FROZEN(m, Sumsub(xi, s), n, s)
TERMSUB(Case(m, xi, n), s) -> SUMSUB(xi, s)
TERMSUB(Termapp(m, n), s) -> TERMSUB(m, s)
TERMSUB(Termapp(m, n), s) -> TERMSUB(n, s)
TERMSUB(Termpair(m, n), s) -> TERMSUB(m, s)
TERMSUB(Termpair(m, n), s) -> TERMSUB(n, s)
TERMSUB(Terminl(m), s) -> TERMSUB(m, s)
TERMSUB(Terminr(m), s) -> TERMSUB(m, s)
TERMSUB(Termvar(x), Consusual(y, m, s)) -> TERMSUB(Termvar(x), s)
TERMSUB(Termvar(x), Conssum(xi, k, s)) -> TERMSUB(Termvar(x), s)
TERMSUB(Termsub(m, s), t) -> TERMSUB(m, Concat(s, t))
TERMSUB(Termsub(m, s), t) -> CONCAT(s, t)
FROZEN(m, Sumconstant(Left), n, s) -> TERMSUB(m, s)
FROZEN(m, Sumconstant(Right), n, s) -> TERMSUB(n, s)
FROZEN(m, Sumtermvar(xi), n, s) -> TERMSUB(m, s)
FROZEN(m, Sumtermvar(xi), n, s) -> TERMSUB(n, s)
SUMSUB(xi, Conssum(psi, k, s)) -> SUMSUB(xi, s)
SUMSUB(xi, Consusual(y, m, s)) -> SUMSUB(xi, s)
CONCAT(Concat(s, t), u) -> CONCAT(s, Concat(t, u))
CONCAT(Concat(s, t), u) -> CONCAT(t, u)
CONCAT(Consusual(x, m, s), t) -> TERMSUB(m, t)
CONCAT(Consusual(x, m, s), t) -> CONCAT(s, t)
CONCAT(Conssum(xi, k, s), t) -> CONCAT(s, t)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:

Termination of R could not be shown.
Duration:
0:00 minutes