Term Rewriting System R:
[x, y, l]
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(s(x), s(y)) -> +'(x, y)
*'(s(x), s(y)) -> +'(*(x, y), +(x, y))
*'(s(x), s(y)) -> *'(x, y)
*'(s(x), s(y)) -> +'(x, y)
SUM(cons(x, l)) -> +'(x, sum(l))
SUM(cons(x, l)) -> SUM(l)
PROD(cons(x, l)) -> *'(x, prod(l))
PROD(cons(x, l)) -> PROD(l)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS


Dependency Pair:

+'(s(x), s(y)) -> +'(x, y)


Rules:


+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pair can be strictly oriented:

+'(s(x), s(y)) -> +'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS


Dependency Pair:


Rules:


+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS


Dependency Pair:

*'(s(x), s(y)) -> *'(x, y)


Rules:


+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pair can be strictly oriented:

*'(s(x), s(y)) -> *'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 6
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS


Dependency Pair:


Rules:


+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS


Dependency Pair:

SUM(cons(x, l)) -> SUM(l)


Rules:


+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pair can be strictly oriented:

SUM(cons(x, l)) -> SUM(l)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
SUM(x1) -> SUM(x1)
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 7
Dependency Graph
       →DP Problem 4
AFS


Dependency Pair:


Rules:


+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering


Dependency Pair:

PROD(cons(x, l)) -> PROD(l)


Rules:


+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pair can be strictly oriented:

PROD(cons(x, l)) -> PROD(l)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
PROD(x1) -> PROD(x1)
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 8
Dependency Graph


Dependency Pair:


Rules:


+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes